
GALOIS THEORY: LECTURE 24

LEO GOLDMAKHER

1. CONSTRUCTING FINITE FIELDS

Although most of the semester we stated and proved theorems about general field extensions L/K, in practice
we’ve barely touched the theory of finite fields. Our primary goal today is to develop this theory, and to explore
the Galois theory of finite fields. (We’ll finish by discussing some cool additional topics related to things we’ve
explored during the course.) We begin with a motivating question.

Question 1. Does there exist a field F with precisely six elements?

Will suggested F := {0, 1} × {0, i, 2i}, under some appropriate operation. After playing around with a few
possible operations, however, we were unable to make this into a field. So what would a field with 6 elements
look like?

To get a better sense of this, we reviewed some true facts about finite fields. First recall that if F is a finite
field, then it must have characteristic p for some prime p; furthermore, F must contain Fp as a subfield (see
problems 4.1 and 4.2). In short, F/Fp. This fact already imposes a strong restriction on F:

Proposition 1.1. Given any finite field F with char F = p. Then |F| = pn for some n ∈ N.

Proof. Let B be a basis of F over Fp. Since every element of F can be expressed in a unique way as a linear
combination of the elements of B, we deduce that |F| = |Fp||B| = p|B|. Since F is finite, B must be finite, and
we conclude. �

This explains why we struggled to find a field with six elements – there aren’t any! By contrast, there could be
a field with four elements. Notice that Proposition 1.1 doesn’t guarantee the existence of such a field, however.
Can we construct one? If it did exist, Proposition 1.1 implies that it must have characteristic 2. Andrew
proposed a natural guess: Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Under addition this is nicely behaved, but
unfortunately isn’t nice with respect to multiplication. For example, what’s the multiplicative inverse of (0, 1)?

Instead, we go back to the proof of Proposition 1.1: if a field F with 4 elements exists, then it must consist of
linear combinations of F2. In other words, we must build F on the skeleton of F2. We quickly realized that we
have a nice way to do this: we use Kronecker’s approach! More precisely, if g ∈ F2[x] is a quadratic irreducible
in F2, then

F := F2[x]/(g)

is a field of degree 2 over F2, i.e. with 4 elements in it. Playing around a bit, we see that we can take
g(x) = x2 + x + 1. (In fact, this is the unique quadratic irreducible in F2[x].) This allows us to label the four
elements of F:

F := F2[x]/(x
2 + x+ 1) = {0, 1, x, 1 + x}.

(Note that we’re omitting brackets around the elements, which really should be there but are annoying to write
and read.) To build up some intuition about this field, let’s write down addition and multiplication tables.
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+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 1 x x+ 1

1 1 x x+ 1

x x x+ 1 1

x+ 1 x+ 1 1 x

These tables exhibit something potentially counterintuitive about F: unlike Fp, it is not cyclic with respect
to addition. It is, however, cyclic with respect to multiplication. For example, x generates the group, since
x2 = x+ 1 and x3 = x(x+ 1) = 1. In hindsight, this is clear on theoretical grounds, since F× has 3 elements
and any group with a prime number of elements is cyclic (and generated by any non-identity element).

It turns out that this property generalizes to all finite fields:

Theorem 1.2. If F is a finite field, then F× is cyclic.

Example 1. Consider F7 = {0, 1, 2, 3, 4, 5, 6}. Then F×7 = {1, 2, 3, 4, 5, 6}, which is not obviously cyclic.
(Unlike the case we considered above, this group doesn’t have prime order!) However, some trial and error
shows that

F×7 = 〈3〉.
But 3 isn’t the only generator; 5 also generates all of F×7 . Note that 2, 4, and 6 are not generators (since they
have order 3, 3, and 2 respectively).

Example 2. Next, let’s consider a more complicated finite field, with nine elements. We construct it as before,
using Kronecker’s approach:

F9 := F3[x]/(x
2 + 1) = {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}.

The operations here are addition and multiplication (mod 3), with the additional restriction that x2 = 2. We see
that F9 isn’t cyclic group with respect to addition. Is F×9 cyclic? Note that x isn’t a generator, since

x2 = 2 and 22 = 1,

whence x has order 4. A bit more thought shows that F×9 = 〈x+ 1〉. Indeed,

(x+ 1)2 = 2x and (2x)2 = 2,

so x + 1 doesn’t have order 2 or 4. On the other hand, Lagrange’s theorem guarantees that the order of any
element in F×9 must have order dividing 8. It follows that x+ 1 must have order 8, and is therefore a generator.
More generally, here’s a multiplication table of F×9 :

× 1 2 x x+ 1 x+ 2 2x 2x+ 1 2x+ 2

1 1 2 x x+ 1 x+ 2 2x 2x+ 1 2x+ 2

2 2 1 2x 2x+ 2 2x+ 1 x x+ 2 x+ 1

x x 2x 2 x+ 2 2x+ 2 1 x+ 1 2x+ 1

x+ 1 x+ 1 2x+ 2 x+ 2 2x 1 2x+ 1 2 x

x+ 2 x+ 2 2x+ 1 2x+ 2 1 x x+ 1 2x 2

2x 2x x 1 2x+ 1 x+ 1 2 2x+ 2 x+ 2

2x+ 1 2x+ 1 x+ 2 x+ 1 2 2x 2x+ 2 x 1

2x+ 2 2x+ 2 x+ 1 2x+ 1 x 2 x+ 2 1 2x



2. PROOF OF THEOREM 1.2

Recall that Theorem 1.2 asserts that F× is cyclic for any finite field F. Even in the familiar case of Fp this is
far from obvious (as our example with F7 shows). Indeed, it remains a fascinating open problem to determine
an algorithm for producing a generator of Fp which is more efficient than trial-and-error; see Appendix A for a
brief overview of some relevant results and conjectures.

There are many proofs of Theorem 1.2, none of them easy. The simplest I’ve seen relies on a sharper version
of Lagrange’s theorem for abelian groups. Before stating this, recall that the exponent of a group G, denoted
exp(G), is the largest order of any element of G.

Lemma 2.1. If G is abelian, then ord(g)
∣∣∣ exp(G) for all g ∈ G.

A proof is sketched below. Taking the result on faith for now, we can prove Theorem 1.2 fairly easily.

Proof of Theorem 1.2. For brevity, set ε := exp(F×); we will show that ε = |F×|. Lemma 2.1 implies that
every element of F× is a root of xε− 1, and since F is a field, we know this polynomial has at most ε roots (see
problem 5.4). It follows that |F×| ≤ ε. On the other hand, Lagrange’s theorem implies that ε

∣∣∣ |F×|, whence
ε ≤ |F×|. Thus, we’ve proved that

exp(F×) = ε = |F×|.
This implies that the order of some element of F× is the order of F×, whence F× must be cyclic. �

Exercise 1. The goal of this exercise is to prove Lemma 2.1. Throughout let G be a finite abelian group.

(a) Prove that if ord(g) and ord(h) are coprime, then ord(gh) = ord(g) · ord(h).
(b) Given arbitrary g, h ∈ G, prove that there exist positive integers k and ` such that

ord(gkh`) = [ord(g), ord(h)],

where [a, b] denotes the least common multiple of a and b. [Hint: try working this out in the case that
ord(g) = 60 and ord(h) = 630.]

(c) Prove Lemma 2.1.
(d) Is the hypothesis that G be abelian necessary?

3. CHARACTERIZING FINITE FIELDS

We’ve proved that any finite field F must have pn elements. Does the converse hold? In other words, given a
prime power pn, must there exist a finite field with pn elements? Our work with Kronecker’s method suggests
an affirmative answer. In fact, we will prove more:

Theorem 3.1. For any prime power pn, there exists a field F with precisely pn elements. Moreover, this field is
unique (up to isomorphism).

This theorem, combined with Proposition 1.1, completely characterizes finite fields. As a first step, we prove:

Proposition 3.2. If F is a finite field with pn elements, then it is a splitting field of xp
n − x over Fp.

Proof. Given a finite field F with pn elements. By Proposition 1.1, F is a field extension of Fp. Theorem
1.2 implies that every element of F× is a root of xpn−1 − 1; it follows that every element of F is a root of
xp

n − x ∈ Fp[x]. Thus F is a splitting field of xpn − x over Fp. �

Remark. Suppose F and F′ are finite fields with |F| = |F′|. Then Proposition 1.1 implies they both have
cardinality pn, and Proposition 3.2 implies they’re both splitting fields of the same polynomial over Fp. Since
splitting fields are unique up to isomorphism by the Isomorphism Lifting Lemma, we deduce that F ' F′. In
other words, we’ve shown that there is at most one finite field of any given cardinality (up to isomorphism).



Example 3. From the proof of Proposition 3.2 we immediately deduce that every element of Fp is a root of
xp − x. In particular,

xp − x =
∏
α∈Fp

(x− α).

Try proving this directly to appreciate how nice the abstract approach is!

To prove Theorem 3.1, all that remains is to show that for any prime power pn there exists a finite field with
cardinality pn. There are multiple ways to accomplish this. Probably the most popular is to prove the existence
of an irreducible polynomial π ∈ Fp[x] of degree n, since then

F := Fp[x]/(π)
would have cardinality pn. Instead, we take a more direct approach.

Exercise 2. Let F be a splitting field of f(x) := xp
n − x over Fp. The goal of this exercise is to prove that

|F| = pn. Throughout, letR denote the set of all roots of f in F.
(a) Prove that if x, y ∈ R, then both x+ y and xy are also inR.
(b) Prove thatR is a field.
(c) Deduce that |F| = pn.

This concludes our proof of Theorem 3.1: for each prime power pn there exists precisely one field (up to
isomorphism) with pn elements. Thus the following notation is well-defined:

Definition. Given q a power of a prime, we denote the field of cardinality q by Fq.

Having characterized finite fields, we’re ready to study Galois theory in this context.

4. GALOIS THEORY FOR FINITE FIELDS

Claim. Given a finite field F with char F = p. Then F/Fp is a Galois extension.

Proof. Let f(x) := xp
n − x. By Proposition 3.2 we know F is a splitting field of f over Fp, so to prove that

F/Fp is Galois it suffices to show that f is separable. This immediately follows from Exercise 2. Alternatively,
note that f ′ = −1, so it must be relatively prime to f ; this implies that f is separable (see Lecture 17). �

Having established that F/Fp is Galois, the natural question is: what is Gal(F/Fp)? To start investigating this
question, we build up intuition by explicitly determining some of the elements of the Galois group. Of course
the trivial map is in there. What’s an example of a nontrivial element in Gal(F/Fp)? In other words, can we
identify a nontrivial isomorphism F→ F which fixes every element of Fp? It’s not so obvious!

Let’s start by thinking about what nontrivial maps fix every element of Fp. This might remind you of a
famous result from elementary number theory: Fermat’s Little Theorem. Recall that this states that xp = x for
all x ∈ Fp. (This is a special case of Proposition 3.2.) In other words, the map x 7→ xp fixes every element of
Fp. How does it behave on F? Is it nontrivial? Is it a homomorphism?

Proposition 4.1. Given a finite field F of characteristic p, define the map φp : F → F by φp(t) := tp. Then
φp ∈ Gal(F/Fp).

Proof. We saw above that φp fixes all of Fp, so it suffices to show that it is an isomorphism. Let’s start by
verifying that φp is a homomorphism:

φp(xy) = (xy)p = xpyp = φp(x)φp(y) and φp(x+y) = (x+y)p = xp+yp = φp(x)+φp(x).

It remains to check that φp is a bijection. First we check that φp is injective. Suppose φp(x) = φp(y). Then

(x− y)p = φp(x− y) = φp(x)− φp(y) = 0,

whence x = y. Since F is finite, it follows that φp must be a bijection. We’ve therefore proved that φp is an
automorphism which fixes all the elements of Fp. �

Example 4. Recall from the beginning of this document the field of four elements F4 = {0, 1, x, x + 1}. As
we saw, we have φ2(x) = x2 = x+ 1 in this field. Thus, φ2 is a nontrivial automorphism of F4.



Thus we’ve discovered one nontrivial map in Gal(F/Fp): the map φp. Are there others? Well, since Gal(F/Fp)
is a group, any power of φp is also an element of the Galois group. What are some other nontrivial elements of
the Galois group? It turns out there aren’t any!

Proposition 4.2. Given finite field F of characteristic p. Then Gal(F/Fp) is cyclic, and is generated by the map
φp defined in Proposition 4.1.

Proof. For concreteness, let’s say F = Fpn . It follows that |Gal(F/Fp)| = [F : Fp] = n, so to prove the claim it
suffices to show that

ord(φp) = n.

Recall from Theorem 1.2 that F× is cyclic, so F× = 〈γ〉 for some γ ∈ F×. Then we have
φp(γ) = γp

φ2
p(γ) = φp(φp(γ)) = φp(γ

p) = γp
2

...

φkp(γ) = γp
k

.

Since ord(γ) = pn − 1, we deduce that φkp(γ) 6= γ for any k < n, whence ord(φp) ≥ n. On the other hand,
since φp ∈ Gal(F/Fp) we trivially have ord(φp) ≤ |Gal(F/Fp)| = n. This completes the proof. �

Clearly the map φp plays an important role in the study of finite fields. It therefore deserves a name:

Definition. Given a finite field F of characteristic p, the Frobenius map is the map F → F defined by t 7→ tp.
(We denoted it φp above.)

Remark. This is just one important object named after Frobenius; we’ll see another result of his in the next
section. For more on his work, see the wikipedia article List of things named after Ferdinand Georg Frobenius.

5. THE DISCRIMINANT AND THE GALOIS GROUP

Last lecture, we looked at a couple of tricks that are often used to find the Galois group of a given polyno-
mial. However, in general, it remains an open problem on how exactly to compute the Galois group of any
polynomial. Here we describe one useful tool. Intuitively, Gal(f) captures the symmetries among the roots of
f . But there’s a more basic way to capture these symmetries: the discriminant.

Definition (Discriminant). Given f ∈ K[x] with roots r1, r2, . . . , rn (not necessarily distinct). The discrimi-
nant of f is

disc(f) :=
∏
i<j

(ri − rj)2.

Example 5. disc(x2 + bx+ c) = b2 − 4c. This looks familiar – it’s the discriminant in the quadratic formula!

Note that the discriminant is a number, so we can’t expect it to be as nuanced as the Galois group. On the other
hand, it’s straightforward to compute, which offers a major advantage!

Example 6. Here are more examples of discriminants (we include the quadratic example for completeness):
• disc(x2 + ax+ b) = a2 − 4b.
• disc(x3 + ax+ b) = −4a3 − 27b2.
• disc(x4 + ax+ b) = −27a4 + 256b3.
• disc(x5 + ax+ b) = 256a5 + 3125b4.

It turns out that the pattern continues:

• disc(xn + ax+ b) = dn−1a
n + dnb

n−1, where dn := (−1)
n(n−1)

2 nn.

Remark. Recall that given f ∈ Q[x] of degree ≤ 4 there exist general formulas for the roots. All of these
involve combinations of the coefficients of f , rational numbers, field operations, and nested radicals. Here are
the expressions appearing in the innermost nested radicals:



• x2 + ax+ b
innermost radical

a2 − 4b

• x3 + ax+ b
innermost radical

− 1

27
(−4a3 − 27b2)

• x4 + ax+ b
innermost radical

− 27(−27a4 + 256b3)

Thus, the discriminant is (up to a rescaling) the quantity appearing under the innermost radical in the formula
for the roots! It’s unclear how to generalize this to higher degree polynomials, however, since there’s no formula
for the roots.

Note that for polynomials of the form xn + ax + b ∈ Q[x], the discriminant is always rational. Is there a
parallel result for general polynomials f ∈ K[x]?

Proposition 5.1. Given a separable polynomial f ∈ K[x]. Then disc(f) ∈ K.

Proof. Note that any permutation of the roots of f leaves the discriminant fixed; in particular, disc(f) is fixed
by every element of Gal(f). Galois theory implies that disc(f) ∈ K. �

It turns out that the discriminant can be used to deduce nontrivial information about the Galois group.

Lemma 5.2. Given K a field of characteristic 6= 2, and suppose f ∈ K[x] is a separable polynomial of degree
n. Then Gal(f) ≤ An if and only if disc(f) is a perfect square in K.

Example 7. Consider f(x) := x5 + x + 1. Then disc(f) = 3381, which isn’t a perfect square. It follows that
Gal(f) isn’t a subgroup of A5.

WARNING. In this example, we cannot conclude that Gal(f) ' S5; all we can say is that Gal(f) must contain
an odd permutation. (Indeed, it turns out that Gal(f) ' S3 × Z2.)

Example 8. A quick computation shows that the polynomial h(x) := x4 + 8x+ 12 has discriminant 212 × 34,
hence is a perfect square. It follows that Gal(h) ≤ A4. (In fact, it can be shown that Gal(h) ' A4.)

Since a very small proportion of numbers are perfect squares, the lemma suggests that it’s rare for Gal(f) to
be a subgroup of An. In fact, this can be quantified: in 1936, van der Waerden proved that 100% of degree n
polynomials with rational coefficients have Galois group Sn. Thus, for example, 100% of quintic polynomials
in Q[x] are not solvable in radicals.

Proof of Lemma. Let L be a splitting field of f over K, and let r1, r2, . . . , rn denote the roots of f . Set

δ :=
∏
i<j

(ri − rj).

For any σ ∈ Gal(f), problem 3.3(f) implies

σ(δ) = sgn(σ)δ.

Thus, σ ∈ An if and only if δ is fixed by σ. It follows that

Gal(f) ≤ An ⇐⇒ σ(δ) = δ ∀σ ∈ Gal(f) ⇐⇒ δ ∈ K.

Since δ2 = disc(f), this concludes the proof. �

Exercise 3. Where in the proof did we use the hypothesis char K 6= 2?



6. CYCLE TYPES AND THE GALOIS GROUP

Recall that one of our most powerful irreducibility tests was to study the local irreducibility. More precisely,
given f ∈ Z[x] and a prime p not dividing the leading coefficient of f , we showed that if f is irreducible
over Fp then f is irreducible over Q. One advantage of this test is that there are only finitely many irreducible
polynomials in Fp[x] of given degree, so one can determine by brute force whether or not f factors over Fp.

Richard Dedekind, one of the pioneers of algebraic number theory, took this a step further: he discovered a
lovely connection between the local factorizations of f and the structure of Gal(f). To state his result, we shall
need the concept of cycle type. Recall that any permutation can be written in a unique way (up to order) as the
product of disjoint cycles. The cycle type describes the shape of this decomposition:

Definition. We say σ ∈ Sn has cycle type (n1, n2, . . . , nk) ∈ Nk iff σ can be written in the form

σ = σ1σ2 · · ·σk
where the σi are disjoint cycles with |σi| = ni.

Example 9. The cycle type of the permutation (1 5 4)(2 6)(7 8) ∈ S8 is (1, 2, 2, 3). Note that the cycle
type is unique up to order, e.g. it could also be written (2, 1, 3, 2). Furthermore, observe that the sum of the
components of the cycle type is 8. This isn’t a coincidence: if the cycle type of σ ∈ Sn is (n1, n2, . . . , nk) then
n1 + n2 + · · ·+ nk = n.

With this concept in hand, we can now state Dedekind’s remarkable result. Unfortunately, the proof is too
far outside the scope of our course – it requires tools from algebraic number theory – but we’ll show some
applications to Galois theory following the theorem.

Theorem 6.1 (Dedekind). Given an irreducible monic polynomial f ∈ Z[x]. Suppose that over Fp we have the
factorization

f = π1π2 · · · πk
into irreducible monic polynomials πi ∈ Fp[x]. Let di := deg πi. Then Gal(f) contains an element of cycle
type (d1, d2, . . . , dk).

Example 10. Consider the polynomial f(x) := x5 + 4x4 + 4x3 − 4x2 − 2x + 2. Right away we know
Gal(f) ≤ S5. Which subgroup is it? By Eisenstein, f is irreducible over Q. Thus we can apply Dedekind’s
theorem:

• Over F2 we have f(x) = x5, whence Gal(f) contains an element of cycle type (5). In other words,
Gal(f) contains a 5-cycle.
• Over F5 we have f(x) = (x2 − 2)(x− 1)(x− 2)(x− 3), whence Gal(f) contains an element of cycle

type (2, 1, 1, 1). In other words, Gal(f) contains a transposition.
Since S5 is generated by any 5-cycle and any transposition, we conclude that Gal(f) ' S5. (Thus f isn’t
solvable in radicals.)

Dedekind’s theorem asserts that the degree type of f over Fp implies the existence of an element in Gal(f)
with corresponding cycle type. One is immediately led to ask about the converse: given that a given cycle type
is represented in Gal(f), does it follow that there exists a prime p such that f has the corresponding degree type
over Fp? The following result, discovered by our old friend Frobenius in 1880, gives a very strong affirmative
answer to this question.

Theorem 6.2 (Frobenius, 1896). Given a monic polynomial f ∈ Z[x], let G := Gal(f). Then the proportion of
primes p for which f has degree type ~d over Fp is the same as the proportion of elements of Gal(f) with cycle
type ~d. In other words,

1

#{p ≤ x}
#{p ≤ x : f has degree type ~d over Fp}

x→∞−−−→ 1

|G|
#
{
σ ∈ G : σ has cycle type ~d

}
.

Remark. In 1922 Chebotarev proved a beautiful generalization of Frobenius’ theorem, called the Chebotarev
Density Theorem, which plays an important role in modern number theory.



Example 11. Let f(x) := x4 − x − 1. It turns out (see below) that Gal(f) ' S4. Since S4 has precisely six
4-cycles, Frobenius’ theorem predicts that f(x) should be a perfect 4th power (mod p) a quarter of the time.
Sure enough, this is what happens! Frobenius’ theorem also (correctly) predicts that f factors into a product of
four linear factors (mod p) precisely 1/24 of the time.

Example 12. Let h(x) := x4+8x+12, which has Galois groupA4 (see below). SinceA4 contains no 4-cycles,
Frobenius’ theorem predicts that h(x) is a perfect 4th power (mod p) 0% of the time. Frobenius’ theorem also
(correctly) predicts that f factors into a product of four linear factors (mod p) precisely 1/12 of the time.

Here’s one immediate consequence of Frobenius’ theorem which is super useful for computational Galois
theory:

Corollary 6.3. Given a monic polynomial f ∈ Z[x], let

Pf := {p prime : f is separable over Fp and splits completely in Fp}.

Then |Gal(f)| = lim
x→∞

#{p ≤ x}
#{p ≤ x : p ∈ Pf}

.

Proof. Gal(f) has precisely one element of cycle type (1, 1, . . . , 1): the identity. �

In practice this is quite useful! Indeed, it’s not too difficult to program a computer to compute the ratio
#{p ≤ x}

#{p ≤ x : p ∈ Pf}
for any given x. Taking x larger and larger yields the size of Galois group of f !

Combining the discriminant, Dedekind’s theorem, and the methods described in Lecture 23, we have a decent
set of tools for determining the Galois group of a given polynomial. Although there are plenty of other tricks
people have invented, the problem of efficiently determining Gal(f) remains difficult and largely open.

Exercise 4. Let f(x) := x4 − x− 1. The goal of this exercise is to prove that Gal(f) ' S4.
(a) Prove that 4 | Gal(f).
(b) Use the discriminant to prove that |Gal(f)| = 4, 8, or 24.
(c) Use Dedekind’s theorem to prove that 3 | Gal(f).

Exercise 5. Let h(x) := x4 + 8x+ 12.
(a) Prove that h is irreducible over Q.
(b) Prove that Gal(h) ' A4.

7. CYCLOTOMIC EXTENSIONS

Recall (from a long time ago – Lecture 12) the following results about constructible numbers:

Proposition 7.1. The set of all constructible numbers forms a field.

Theorem 7.2. If β ∈ C is constructible, then [Q(β) : Q] is a power of 2.

As we mentioned in that lecture, the converse to this theorem is false. We’ve now developed enough theory to
see this:

Exercise 6. Let h(x) := x4 + 8x + 12. Prove that all of its roots have degree 4 over Q, but that not all of its
roots are constructible. [Hint: use the fact (proved above) that Gal(h) ' A4.]

Thus the theorem isn’t quite a characterization of constructible numbers, although it’s already strong enough to
prove the impossibility of constructing certain numbers (see Lecture 12). Employing a bit more care, however,
we can obtain an if and only if characterization of constructibility. The first step is the following exercise:

Exercise 7. Suppose x ∈ C is constructible. Prove that ±
√
x are also constructible. [Hint: prove this for

x ∈ R>0 first.]

Lemma 7.3. Suppose K is a field consisting of constructible numbers, and that L/K is a quadratic extension.
Then L consists of constructible numbers.



Proof. By problem 5.2(c), we can writeL = K(β) for some β ∈ C satisfying β2 ∈ K. Thus β2 is constructible,
whence (by the exercise above) β must also be constructible. Since constructible numbers form a field, L =
K(β) must consist of constructible numbers. �

Corollary 7.4. β ∈ C is constructible if and only if the extension Q(β)/Q can be decomposed into a tower of
quadratic extensions.

Proof. The forward direction is a direct consequence of our work in Lecture 12 (at each stage of the construc-
tion, we create an extension which is either trivial or quadratic). For the reverse direction, suppose Q(β)/Q
can be decomposed into a tower of quadratic extensions:

Q(β) = K0 ⊃ K1 ⊃ · · · ⊃ K`−1 ⊃ K` = Q.

Since Q consists of constructible numbers, Lemma 7.3 implies K`−1 consists of constructible numbers, which
then implies that K`−2 consists of constructible numbers, etc. Thus, we deduce that Q(β) consists of con-
structible numbers. In particular, β must be constructible. �

Thus we’ve come up with a more careful phrasing of Theorem 7.2 which is an equivalence. For certain choices
of β, however, Theorem 7.2 itself admits a converse:

Proposition 7.5. A root of unity ζn is constructible if and only if [Q(ζn) : Q] is a power of 2.

Proof. The forward direction follows from the general Theorem 7.2, so it suffices to handle the reverse direc-
tion. Suppose [Q(ζn) : Q] = 2`. Recall (problem 11.3) that Q(ζn)/Q is Galois. The plan is to use the FTGT
and Sylow’s theorem to produce a chain of quadratic extensions connecting Q to Q(ζn).

Let G := Gal(Q(ζn)/Q). By Sylow’s theorem (see Lecture 17) there exists an index 2 subgroup G1 ≤ G.
Applying the FTGT produces a subfield K1 ⊂ Q(ζn). Here’s a picture:

Q(ζn)

K1

Q

2

2`−1

Galois correspondence←−−−−−−−−−→

{e}

G1

G

2`−1

2

Next we apply Sylow’s theorem to produce a subgroup G2 ≤ G1 of index 2, and then the FTGT to give a
corresponding subfield K2:

Q(ζn)

K1

K2

Q

2

2

2`−2

Galois correspondence←−−−−−−−−−→

{e}

G2

G1

G

2`−2

2

2



Iterating this we obtain the following correspondence:

K0 = Q(ζn)

K1

...

K`−1

K` = Q

2

2

2

2

Galois correspondence←−−−−−−−−−→

{e} = G`

G`−1

...

G1

G = G0

2

2

2

2

We’ve thus decomposed Q(ζn)/Q into a tower of quadratic extensions, whence Corollary 7.4 implies ζn is
constructible. �

In view of their importance both in constructibility and in our proof of Galois’ solvability criterion, extensions
of the form Q(ζn)/Q deserve a name:

Definition. A cyclotomic extension is any field extension of the form K(ζ)/K, where ζ is a root of unity.

Recall (problem 11.3) that Gal(Q(ζn)/Q) embeds in (Z/nZ)×; we used this to prove that Q(ζn)/Q is abelian.
The same proof works for any cyclotomic extension, with Q replaced by an arbitrary field K. However, in the
special case of Q(ζn)/Q, more is true:

Proposition 7.6. Gal(Q(ζn)/Q) ' (Z/nZ)×.

Remark. This doesn’t hold for general cyclotomic extensions, e.g. Gal(R(ζ7)/R) 6' (Z/7Z)×.

Right away we deduce that
[Q(ζn) : Q] = |Gal(Q(ζn) : Q)| = ϕ(n),

where ϕ(n) is Euler’s totient function. We’re now ready to prove an assertion we made in Lecture 12, originally
a combination of work of Gauss and Wantzel:

Theorem 7.7. The regular n-gon is constructible if and only if n is a product of some power of 2 with any
number of distinct Fermat primes.

Remark. Recall that a Fermat prime is any prime of the form 2k + 1; as you proved in problem 6.5, Fermat
primes must be of the form 22

k
+ 1.

Proof. First recall that the regular n-gon is constructible if and only if ζn is constructible. Proposition 7.5
asserts that this happens if and only if [Q(ζn) : Q] is a power of 2. Since [Q(ζn) : Q] = ϕ(n), we’ve proved
that the regular n-gon is constructible if and only if ϕ(n) is a power of 2.

Factor n as a product of primes, say n = 2epe11 p
e2
2 · · · p

e`
` where e ≥ 0, ei > 0 for all i, and the pi are all

distinct odd primes. It’s well-known that ϕ is multiplicative, whence

ϕ(n) = ϕ(2epe11 p
e2
2 · · · p

e`
` ) = ϕ(2e)ϕ(pe11 )ϕ(pe22 ) · · ·ϕ(pe`` ).

Furthermore, it’s well-known that ϕ(pr) = (p− 1)pr−1 whenever r ≥ 1, whence

ϕ(n) = 2f (p1 − 1)(p2 − 1) · · · (p` − 1)pe1−11 pe2−12 · · · pe`−1`

for some f ≥ 0. It’s clear that this is a power of 2 if and only if e1 = e2 = · · · = e` = 1 and all the pi are
Fermat primes. This concludes the proof. �



Before leaving the subject of cyclotomic extensions, we’d be remiss not to mention a beautiful theorem
(which came out of work of Kronecker in 1853, Weber in 1886, and finally Hilbert in 1896):

Theorem 7.8 (Kronecker-Weber). Every finite abelian extension of Q is a subfield of Q(ζn) for some n ∈ Z.
In words: every finite abelian extension is contained in a cyclotomic extension.

Remark. This is reminiscent of Cayley’s theorem (problem 3.6): every finite group is contained in a symmetric
group. Thus the language of symmetric groups is the universal language of finite groups: every finite group can
be described in terms of permutations, since every finite group embeds in some Sn. Analogously, the language
of Q(ζn) is the universal language of finite abelian extensions of Q: every finite abelian extension of Q can be
described in terms of rational linear combinations of roots of unity.

In particular, any α which is algebraic over Q can be expressed as a rational linear combination of roots of
unity. For example,

√
5 = ζ5 − ζ25 − ζ35 + ζ45 .

APPENDIX A. GENERATING F×

As mentioned in Section 2, even though we know that F× is cyclic by Theorem 1.2, it is a notoriously difficult
problem to determine a generator in any way which is more efficient than trial-and-error. Of course, we can
eliminate some elements from consideration: clearly 1, 0, and −1 will never generate F×p when p ≥ 5. A bit
more thought shows that a perfect square can never generate F×p . Can you see why not?

Despite phrasing it dismissively, trial-and-error isn’t necessarily a bad way to search for a generator; it
depends on how small the smallest generator is. In other words, it’s possible that starting at 2 and going up, one
doesn’t have to try too many elements before finding a generator. Is this true? To phrase this more precisely:

Question 2. Let gp denote the least positive integer which generates F×p . Can we prove that gp isn’t too large?

It is conjectured that gp � log2 p. (Here the notation f(x) � g(x) means that there exists a constant C > 0
such that |f(x)| ≤ Cg(x) for all x.) If this conjecture is true, then trial and error is pretty good: log p grows
very slowly with p (it’s proportional to the number of digits of p). Unfortunately, we are very far from being
able to prove this conjecture. The best result to date is

Theorem A.1 (Burgess, 1962). For any fixed ε > 0, we have gp � p1/4+ε.

To appreciate just how far this is from the conjecture, note that log p � pε for any fixed ε > 0. It’s worth
pointing out that the conjecture is known to hold on average: Burgess and Elliott proved in 1968 that

1

π(x)

∑
p≤x

gp � (log x)2+ε.

(Here π(x) denotes the number of primes p ≤ x.) Of course, this type of average result tells us very little about
the size of gp for any particular prime p.

So much for upper bounds on gp. Lower bounds are also mysterious. For example, there are a bunch of p
for which gp = 2, so the strongest universal lower bound one could hope for is gp ≥ 2. A more interesting
question is:

Question 3. Is there a nontrivial lower bound on gp for all sufficiently large p?

In other words, maybe gp = 2 only for some finite set of primes p, and then eventually starts to grow? No one
knows the answer to this question. However, a notorious conjecture asserts that this isn’t the case:

Conjecture A.2 (Artin’s Conjecture). Given any integer a which is not −1 or a perfect square, we have

F×p = 〈a〉

for infinitely many primes p.



In fact, Artin conjectured a much stronger assertion: whenever a 6≡ 1 (mod 4) is a prime, it seems to be the
case that a generates F×p for ≈ 37% of primes p. Results of M. Goldfeld, P. J. Stephens, and myself with G.
Martin prove that this more precise conjecture is true ‘on average’ (precisely: we can prove that F×p = 〈a〉 for
37% of pairs (a, p) with |a| < p).

Although there is still no single value of a for which Artin’s conjecture is known to hold, we do know that it
holds for almost all choices of a. A crazy awesome example of this is the following:

Theorem A.3 (Heath-Brown, 1986). Let P denote the set of all primes. There exist p, q ∈ P such that Artin’s
conjecture holds for all a ∈ P \ {p, q}.

Thus, for example, we know that Artin’s conjecture must hold for at least one of 3, 5, 7, but we have no idea
which one! (In fact, presumably Artin’s conjecture holds for all a ∈ P; Heath-Brown’s result simply says that
this is true with at most two exceptions.)

Even though it’s difficult to produce a generator of Fp, Theorem 1.2 guarantees the existence of one. In fact,
we know a bit more:

Theorem A.4 (Gauss). For any integer n ≥ 2, Z×n has either 0 or ϕ
(
ϕ(n)

)
generators. (Here ϕ(n) is Euler’s

totient function, the number of positive integers less than and relatively prime to n.)

In other words, if Z×n is cyclic, then we know precisely how many generators it has. Combining this with
Theorem 1.2, we deduce that F×p has precisely ϕ(p − 1) generators. Although a bit more is known (Gauss
discovered some identities involving the sum and product of all the generators, for example), the structure of
the generators remains largely a mystery.
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