Williams College
 Department of Mathematics and Statistics

MATH 402 : MEASURE THEORY

Problem Set 2 - due Monday, September 28th

INSTRUCTIONS:

This assignment should be submitted to Glow before Monday at $\mathbf{6 p m}$. Late assignments may be submitted by 3 pm on Tuesday; however, 5% will be deducted for submissions past Monday 6 pm . Assignments will not be accepted after 3pm Tuesday under any circumstances. Please label your file in the format Lastname-PS2. If you're having difficulty scanning your work in a way that's legible, please let me or the TA know and we can try to help.
2.1 Suppose $\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$ is a finite collection of closed intervals that covers the closed interval I, i.e. $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Prove that $|I| \leq\left|I_{1}\right|+\left|I_{2}\right|+\cdots+\left|I_{n}\right|$.
2.2 After some playing around, one might decide that the function μ defined by

$$
\mu(E):=\lim _{N \rightarrow \infty} \frac{1}{N} \#\left(E \cap \frac{1}{N} \mathbb{Z}\right)
$$

might be a reasonable notion of length on \mathbb{R}. (Here $\frac{1}{N} \mathbb{Z}:=\left\{\frac{k}{N}: k \in \mathbb{Z}\right\}$, and $\# S$ denotes the number of elements in S.) The purpose of this problem is to investigate this.
(a) Prove that $\mu([a, b])=b-a$ whenever $b \geq a$.
(b) Prove that if A is a finite union of disjoint intervals, then $\mu(A)$ is the sum of the lengths of these intervals.
(c) Construct a set $A \subseteq \mathbb{R}$ for which $\mu(A)$ is undefined. (Note: we consider $\mu(A)=\infty$ well-defined.)
(d) Prove that $\mu(\mathbb{Q} \cap[0,1]) \neq \mu(\sqrt{2}+\mathbb{Q} \cap[0,1])$, where $\alpha+S$ denotes the translation of the set S by α.
2.3 Textbook questions: Exercises 1, 2, 14, 24, 28 (These are on pages 37-44; Exercises \neq Problems!)

