Williams College
 Department of Mathematics and Statistics

MATH 402 : MEASURE THEORY

Problem Set 5 - due Monday, November 2nd

INSTRUCTIONS:

You should aim to submit this assignment (via Glow) before Monday at 6pm. Late assignments may be submitted by 3 pm on Tuesday; however, 5% will be deducted for submissions past Monday 6 pm . Assignments will not be accepted after 3pm Tuesday under any circumstances. Please label your file in the format Lastname-PS5. If you're having difficulty scanning your work in a way that's legible, please let me or the TA know and we can try to help.
5.0 Read pages 23-34 in Stein-Shakarchi.
5.1 The goal of this problem is to highlight the phenomenon Ben pointed out in class: it's possible for f_{n} to be a nice sequence of functions that converges to f, but for $\int f_{n}$ to not converge to $\int f$. Enumerate \mathbb{Q} as $\left\{q_{1}, q_{2}, q_{3}, \ldots\right\}$ and consider the sequence of functions

$$
f_{n}:=\chi_{\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}}
$$

(As usual, χ_{A} denotes the characteristic function of A.)
(a) Prove that f_{n} is a monotonically increasing sequence of functions, i.e. that $m \leq n$ implies $f_{m}(t) \leq f_{n}(t)$ for all t.
(b) Prove that $\lim _{n \rightarrow \infty} f_{n}=\chi_{\mathbb{Q}}$ pointwise.
(c) Prove that $\int_{0}^{1} f_{n}=0$ for any n.
5.2 In most calculus courses the Riemann integral $\int_{a}^{b} f$ is presented in terms of left and right Riemann sums: given a positive integer N, set $\Delta_{N}:=\frac{b-a}{N}$ and define

$$
\operatorname{Left}(f, N):=\Delta_{N} \sum_{k=0}^{N-1} f\left(a+k \Delta_{N}\right) \quad \text { and } \quad \operatorname{Right}(f, N):=\Delta_{N} \sum_{k=1}^{N} f\left(a+k \Delta_{N}\right)
$$

(Colloquially: divide the interval $[a, b]$ into N identical subintervals and approximate the area under f by a sum of rectangles with height based on either the left endpoint or right endpoint of each subinterval. Draw a picture for yourself if this isn't clear.) If $\lim _{N \rightarrow \infty} \operatorname{Left}(f, N)=\lim _{N \rightarrow \infty} \operatorname{Right}(f, N)$, then (one is taught) the integral exists and is defined

$$
\int_{a}^{b} f:=\lim _{N \rightarrow \infty} \operatorname{Left}(f, N)
$$

The goal of this problem is to show that this is not a good definition.
(a) Let $S:=\left\{a+k \Delta_{N}: k \in \mathbb{Z} \cap[0, N-1]\right\}$, where a, b, N, Δ_{N} are defined above. Prove that either $S \subseteq \mathbb{Q}$ or $\#(S \cap \mathbb{Q}) \leq 1$.
(b) Find a function $f:[0,1] \rightarrow \mathbb{R}$ and $\alpha \in[0,1]$ such that $\int_{a}^{b} f$ exists for every $[a, b] \subseteq[0,1]$ according to the above definition, but

$$
\int_{0}^{\alpha} f+\int_{\alpha}^{1} f \neq \int_{0}^{1} f
$$

Prove all these assertions.
5.3 Recall that in class we argued (using an implicit LEO) that for any function $f: \mathbb{R} \rightarrow \mathbb{R}$ with period 1 we should expect the formula

$$
\begin{equation*}
f(x)=\sum_{n \in \mathbb{Z}} a_{n} e(n x) \tag{*}
\end{equation*}
$$

where $a_{n}:=\int_{0}^{1} f(t) e(-n t) d t$ and $e(\alpha):=e^{2 \pi i \alpha}$. The numbers a_{n} are called the Fourier coefficients of f, and the right hand side of $(*)$ is called the Fourier series of f. Although $(*)$ doesn't hold in general (that's the problem with arguments using LEOs!), it turns out it usually does, and a lot of Fourier analysis is concerned with finding conditions under which a function is equal to its Fourier series. A typical classical result in the area is that if f has period 1 and $\int_{0}^{1}|f|<\infty$, then (*) holds for every x at which f is differentiable. How much can one weaken these hypotheses? Quite a lot: one of the biggest breakthroughs of 20th century mathematics was Carleson's theorem (1966) that if $\int_{0}^{1}|f|^{2}<\infty$, then (*) holds for almost every x.
The goal of this problem is to see a cool application of Fourier series that will hopefully whet your appetite to learn more about the subject.
(a) Let $F(x)=\{x\}(1-\{x\})$, where $\{x\}$ denotes the fractional part of x (i.e. $\{x\}=x(\bmod 1)$, or equivalently, $\{x\}=x-\lfloor x\rfloor)$. Prove that $a_{0}=\frac{1}{6}$ and $a_{n}=-\frac{1}{2 \pi^{2} n^{2}}$ for all $n \neq 0$, where the a_{n} denote the Fourier coefficients of F.
(b) Prove that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

You may freely use any of the results stated in the introduction to this problem.
(c) Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

5.4 Textbook exercises ${ }^{1} 17,18,22$
5.5 Textbook problems ${ }^{2} 1,4$

[^0]
[^0]: ${ }^{1}$ These are on pages $37-44$; Exercises \neq Problems
 ${ }^{2}$ These are on pages 46-48; Exercises \neq Problems!

