Instructor: Leo Goldmakher

Williams College Department of Mathematics and Statistics

MATH 402 : MEASURE THEORY

Problem Set 7 - due Monday, November 16th

INSTRUCTIONS:

You should aim to submit this assignment (via Glow) before Monday at **6pm**. Late assignments may be submitted by **3pm** on Tuesday; however, 5% will be deducted for submissions past Monday 6pm. Assignments will not be accepted after 3pm Tuesday under any circumstances. Please label your file in the format Lastname-PS7. If you're having difficulty scanning your work in a way that's legible, please let me or the TA know and we can try to help.

- **7.1** Let I := [0, 1]. Lusin's theorem implies the existence of $F \subseteq I$ such that $m(I \setminus F) < \epsilon$ and $\chi_{\mathbb{Q} \cap I}\Big|_F$ is continuous. Give an explicit example of such an F.
- **7.2** Carefully write down the proof of the following: if $f_n : E \to \mathbb{R}$ is a sequence of continuous functions that converges uniformly to f, then f is continuous.
- **7.3** Consider the function $\sigma : \mathbb{R} \to \mathbb{R}$ defined by

$$\sigma(x) := \frac{1}{2} - \left| \{x\} - \frac{1}{2} \right|,$$

where $\{x\}$ denotes the fractional part of x (i.e. $\{x\} = x \pmod{1} = x - \lfloor x \rfloor$). Out of this we now build a sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$ defined

$$f_n(x) := \frac{1}{2^n} \sigma(2^n x).$$

- (a) Give a simple description of the function $f(x) := \lim_{n \to \infty} f_n(x)$.
- (b) Does $f_n \to f$ uniformly? Prove your assertion.
- 7.4 Suppose $f_n : [0,1] \to \mathbb{R}$ are continuous functions such that $f_n \nearrow f$ (i.e. f_n converges to f pointwise and $f_n(x) \le f_{n+1}(x)$ for every n and x). Prove that f is continuous iff $f_n \to f$ uniformly. [Hint. Consider the sets $A_n := \{x : f(x) f_n(x) < \epsilon\}$.]
- **7.5** Show by example that Egorov's theorem cannot be improved to an 'almost everywhere' result. More precisely, construct a sequence of measurable functions $f_n : [0, 1] \to \mathbb{R}$ that converge almost everywhere to some function $f : [0, 1] \to \mathbb{R}$ pointwise, but that don't converge uniformly to f on any closed set of measure 1.
- **7.6** Suppose $F \subseteq \mathbb{R}$ is closed, and that $f: F \to \mathbb{R}$ is continuous on F. Prove that there exists a function $\widetilde{f}: \mathbb{R} \to \mathbb{R}$ such that \widetilde{f} is continuous on \mathbb{R} and $\widetilde{f}\Big|_{F} = f$.
- 7.7 Extend Lusin's theorem to the case that m(E) is infinite. [Hint. Use the finite version of Lusin's theorem.]