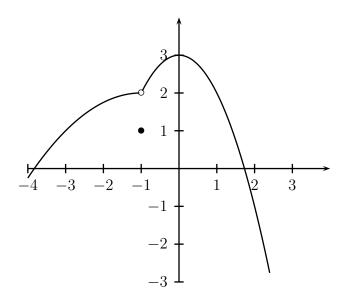
MATA32 – Winter 2010 Quiz 6: Solutions

Name:	KEY	

1. The picture below shows a graph of y = f(x). Does $\lim_{x \to -1} f(x)$ exist? If so, evaluate it; if not, explain why not.



As indicated in the picture, f(-1)=1. However, as x approaches -1 from the left, the value of f(x) is approaching 2; in other words, $\lim_{x\to -1^-} f(x)=2$. Similarly, $\lim_{x\to -1^+} f(x)=2$. Since the left and right limits both exist and agree, we conclude that $\lim_{x\to -1} f(x)$ exists, and equals 2.

Continued on reverse...

2. (a) Consider $\lim_{x\to -2} \frac{x+2}{x^2-4}$. If the limit exists, evaluate it. If the limit does not exist, explain why not.

First, note that this is a 0/0 case, which means the answer could be anything ... so we have to work out the answer carefully. Here we go:

$$\lim_{x \to -2} \frac{x+2}{x^2 - 4} = \lim_{x \to -2} \frac{x+2}{(x+2)(x-2)}$$

$$= \lim_{x \to -2} \frac{1}{x-2}$$

$$= -\frac{1}{4}$$

(b) Consider $\lim_{x\to 2}\frac{x+2}{x^2-4}$. If the limit exists, evaluate it. If the limit does not exist, explain why not.

In this case, blindly plugging in x=2 would give 4/0, which automatically tells us that the answer is either $+\infty$, $-\infty$, or DNE. To figure out which one, we plug in values slightly to the left and to the right of 2 and see what we get (they must be either $+\infty$ or $-\infty$). If we plug in x=1.9, we would have a positive number in the numerator, and a negative in the denominator; this tells us that $\lim_{x\to 2^-}\frac{x+2}{x^2-4}=-\infty$. Plugging in x=2.1 still yields a positive numerator, but this time, the denominator is also positive; in other words, $\lim_{x\to 2^+}\frac{x+2}{x^2-4}=+\infty$. Since the left and right limits do not agree, the two-sided limit as $x\to 2$ does not exist.