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UNIVERSITY OF TORONTO SCARBOROUGH

MATA37H3 : Calculus for Mathematical Sciences II

REFERENCE SHEET

The (natural) logarithm and exponential functions

(1) The (natural) logarithm function is defined:

log x =

∫ x

1

1

t
dt.

(2) For all a, b > 0, we have log ab = log a+ log b.

(3) For all n ∈ N and all x > 0, we have log xn = n log x.

(4) exp = log−1.

(5) exp′ = exp.

(6) e = exp(1).

(7) For a > 0 and x ∈ R, we define the function ax by ax = exp(x log a).

Inverse trigonometric functions

Let

• f : [−π/2, π/2]→ [−1, 1] by f(x) = sinx,

• g : [0, π]→ [−1, 1] by g(x) = cosx, and

• h : (−π/2, π/2)→ R by h(x) = tanx.

Then we define the inverse trigonometric functions by

arcsin = f−1, arccos = g−1, arctan = h−1.

Definition of partitions, upper and lower sums

(1) P is a partition of [a, b] if P is a finite subset of [a, b] which contains both endpoints.

(2) Given a function f defined on [a, b] and a partition P of [a, b], set

L(f,P) =
∑
j≤n

mj(tj − tj−1)

where P = {t0, t1, . . . , tn} with ti < ti+1 for all i, and mj = inf{f(x) : x ∈ [tj−1, tj ]}. Similarly,
define

U(f,P) =
∑
j≤n

Mj(tj − tj−1)

where Mj = sup{f(x) : x ∈ [tj−1, tj ]}.

(3) For any partitions P and Q of [a, b], and any function f which is defined and bounded on [a, b], we
have

L(f,P) ≤ U(f,Q).
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(1) Prove each of the following assertions. You may freely quote the properties listed on the ref-
erence page without proof, but any other properties of log or exp must be explicitly proved
in your solution. (You are allowed to refer to any theorems from lecture or the text which
are not about log or exp.)

(a) (5 points) lim
x→∞

log x =∞.

Given M , it suffices to show that log x > M for all sufficiently large x.

By the Archimedean property, there exists a natural number

n >
M

log 2
.

Since log 2 > 0 (as can be seen from the definition of log), property (3) from
the reference sheet implies that

log 2n = n log 2 > M.

Finally, applying the fundamental theorem of calculus to the definition of
the logarithm, we see that d

dx
log x = 1

x
> 0 for all x > 0; in particular, log x is

an increasing function. It follows that for all x > 2n,

log x > log 2n > M.

(b) (5 points) lim
x→∞

ex =∞.

First, observe that exp is a function: log is increasing, hence is injective, so
its inverse is a function. Moreover, since log is increasing, we conclude that
exp must be increasing as well. It follows immediately that e > 1, since
exp 1 > exp 0. Thus we may apply definition (7) to conclude that ex = exp(x)
for all x, since log e = 1 by property (6).

GivenM , it suffices to prove that ex > M for all sufficiently large x. IfM ≤ 0,
then we are immediately done, since ex > 1 for all x > 0. If M > 0, then for
all x > logM we have

ex = exp(x) > exp(logM) =M

since exp is increasing.

(c) (5 points) lim
x→∞

x2

ex
= 0.

Since both x2 and ex tend to∞ as x → ∞, we may apply L’Hôpital’s rule to
deduce:

lim
x→∞

x2

ex
= lim

x→∞

2x

ex

(where we have used Property (5) that exp′ = exp). Since both 2x and ex tend
to∞with x, we may apply L’Hôpital once more to deduce

lim
x→∞

2x

ex
= lim

x→∞

2

ex
.

This last quantity clearly tends to 0, since the numerator is constant and the
denominator tends to∞. More precisely, given any ε > 0, let x0 = log 2

ε
. For

all x > x0, we have ex > 2
ε
, since exp is increasing. Finally, since ex > 0, we

conclude that ∣∣∣∣ 2ex − 0

∣∣∣∣ < ε.

continued on page 3
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(2) For this problem, you may freely refer to any of the properties listed on the reference sheet.

(a) (8 points) Suppose f : [a, b] → R is a bounded function, and let P denote the set of all
partitions of [a, b]. Prove that sup

P∈P
L(f,P) ≤ inf

P∈P
U(f,P).

Fix any partition Q ∈ P. By property (3) on the reference sheet, we see that
U(f,Q) is an upper bound on the set {L(f,P) : P ∈ P}. It follows that

sup
P∈P

L(f,P) ≤ U(f,Q),

since the left side is the least upper bound.

In the argument above, the partition Q ∈ P was arbitrary. Thus, sup
P∈P

L(f,P)

is a lower bound on the set {U(f,Q) : Q ∈ P}. It follows that

sup
P∈P

L(f,P) ≤ inf
Q∈P

U(f,Q),

since the right hand side is the greatest lower bound.

(b) (8 points) Show by example that it’s possible for sup
P∈P

L(f,P) < inf
P∈P

U(f,P). (You must

prove that your example really is an example!)

Let

f(x) =

{
0 if x ∈ Q
1 if x 6∈ Q.

I claim that for all partitions P ∈ P, we have L(f,P) = 0 and U(f,P) = 1.
Indeed, suppose P ∈ P, say

P = {t0, t1, . . . , tn}
with t0 = a, tn = b, and ti < tj whenever i < j. Then

mi = inf
x∈[ti−1,ti]

f(x) = 0

for all i, since Q is dense. Similarly, since the irrationals are dense, we have

Mi = sup
x∈[ti−1,ti]

f(x) = 1.

It follows that L(f,P) = 0 and U(f,P) = 1 as claimed.

We conclude that

sup
P∈P

L(f,P) = 0 < 1 = inf
P∈P

U(f,P).

continued on page 5
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(3) (8 points) Determine the exact numerical value of
∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · ·

You must justify your answer to receive credit. [Hint: Find the Taylor series of arctanx.]

I first claim that the Taylor series for arctanx is given by

arctanx = x− x3

3
+
x5

5
− x7

7
+ · · · (*)

One can obtain this in the standard way (write arctanx = a0+a1x+a2x
2+ · · · , plug

in x = 0 to find a0; differentiate both sides and plug in x = 0 to find a1; differenti-
ate both sides and plug in x = 0 to find a2; etc.). Instead, I describe a tricky shortcut.

First, we find the derivative of arctanx. To do this, we evaluate
d

dx
tan(arctanx)

in two different ways. On one hand, it simply equals 1 (since tan(arctanx) = x).
On the other hand, by chain and quotient rules,

d

dx
tan(arctanx) =

1

cos2(arctanx)
· d
dx

arctanx.

It follows that
d

dx
arctanx = cos2(arctanx) =

1

1 + x2

Recall the expansion
1

1 + x
= 1− x+ x2 − x3 + · · ·

(note that this is the Taylor series of 1
1+x

, and is also the formula for the sum of an
infinite geometric series). Plugging in x = t2 yields

d

dt
arctan t =

1

1 + t2
= 1− t2 + t4 − t6 + · · ·

Integrating both sides from 0 to x gives the Taylor expansion claimed in (*).

Plugging in x = 1 into the Taylor expansion (*) gives

1− 1/3 + 1/5− 1/7 + 1/9− · · · = π

4

continued on page 6
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(4) (20 points) Suppose that f is integrable on [a, b], and that f = g′ for some function g. Prove
that ∫ b

a

f = g(b)− g(a).

[Warning: f might not be continuous on the interval!]

I first claim that
L(f,P) ≤ g(b)− g(a) ≤ U(f,P) ([)

for any partition P of [a, b]. To see this, suppose P = {t0, t1, . . . , tn} is a partition of
[a, b], with ti < tj whenever i < j. By the Mean Value Theorem, for every i there
exists xi ∈ [ti−1, ti] such that

g′(xi) =
g(ti)− g(ti−1)
ti − ti−1

.

Since f = g′, it follows that

f(xi)
(
ti − ti−1

)
= g(ti)− g(ti−1)

for all i. From the definition of L(f,P) and infimum, we see that

L(f,P) =
∑
i

(
inf

[ti−1,ti]
f

)
·
(
ti − ti−1

)
≤
∑
i

f(xi)
(
ti − ti−1

)
=
∑
i

(
g(ti)− g(ti−1)

)
= g(b)− g(a).

Similarly, we see that U(f,P) ≥ g(b)− g(a). Thus, ([) is proved.

The definitions of inf and sup immediate imply that

sup
P
L(f,P) ≤ g(b)− g(a) ≤ inf

P
U(f,P).

Since f in integrable by hypothesis,

sup
P
L(f,P) =

∫ b

a

f = inf
P
U(f,P),

so we conclude that ∫ b

a

f = g(b)− g(a).

continued on page 7
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(5) Evaluate the integrals below. You must justify your answer to receive credit.

(a) (8 points)
∫ 1

0

arctanx dx.

We first integrate by parts. Set u = arctanx and dv = dx. This gives
du = dx

1+x2
and v = x, whence∫ 1

0

arctanx dx = x arctanx

∣∣∣∣1
0

−
∫ 1

0

x

1 + x2
dx (†)

Our next task is to evaluate the integral on right hand side of (†), which I’ll
do via u-substitution. Let u = 1 + x2. Then du = 2x dx, so∫ 1

0

x

1 + x2
dx =

∫ 2

1

1

u
· 1
2
du =

1

2
log u

∣∣∣∣2
1

=
log 2

2

Plugging this back into (†) gives∫ 1

0

arctanx dx =
π

4
− log 2

2

(b) (8 points)
∫ 3

2

x

x− 1
dx.

We have ∫ 3

2

x

x− 1
dx =

∫ 3

2

x− 1 + 1

x− 1
dx

=

∫ 3

2

(
1 +

1

x− 1

)
dx

= x

∣∣∣∣3
2

+ log(x− 1)

∣∣∣∣3
2

= 1 + log 2.

Alternatively, one can solve this by u-substitution. Letting u = x − 1, we
have du = dx, whence∫ 3

2

x

x− 1
dx =

∫ 2

1

u+ 1

u
du =

∫ 2

1

(
1 +

1

u

)
du

which gives the same result as before.

continued on page 8
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(6) Suppose F is a function satisfying F (x) = 2 whenever 0 ≤ x < 2, and

F (x) =

∫ x2/2

x/2

F ∀x ≥ 2.

(In particular, assume that F is integrable on [x/2, x2/2] ∀x ≥ 2.)

(a) (7 points) Prove that F (2) = 2. [Careful! There’s something to prove here.]

I claim that F is integrable on [1, 2], and that
∫ 2

1
F = 2. If F (2) = 2, we’re

done. Thus we may suppose (temporarily) that F (2) 6= 2. Given ε > 0, let

δ =
ε

2 ·
∣∣F (2)− 2

∣∣
and consider the partition P = {1, 2− δ, 2} of the interval [1, 2]. Then

L(F,P) = 2
(
(2− δ)− 1

)
+min{2, F (2)} ·

(
2− (2− δ)

)
= 2 +

(
min{2, F (2)} − 2

)
δ

= 2 +min
{
0,
(
F (2)− 2

)
δ
}
.

Similarly, we find

U(F,P) = 2 + max
{
0,
(
F (2)− 2

)
δ
}
.

Thus, if F (2) > 2 we have L(F,P) = 2 and U(F,P) = 2 + ε
2
; otherwise,

we have L(F,P) = 2 − ε
2

and U(F,P) = 2. Either way, we conclude that
U(F,P)− L(F,P) < ε. Since ε > 0 was arbitrary, this shows that F is inte-
grable on [1, 2].

Now that we know the integral exists, computing it is easy. From above, we
see that for all ε > 0,

2− ε < L(F,P) ≤
∫ 2

1

F ≤ U(F,P) < 2 + ε.

The squeeze theorem then implies that F (2) =
∫ 2

1
F = 2 as claimed.

(b) (7 points) Prove that F is not differentiable at 2.

For F to be differentiable at 2, the left- and right-hand derivatives would
have to agree, i.e.

lim
h→0−

F (2 + h)− F (2)
h

= lim
h→0+

F (2 + h)− F (2)
h

Since F (x) = 2 for all x ≤ 2, the left-hand derivative is 0. I claim that the
right-hand derivative is 3, and hence, that F is not differentiable at 2.

To do this, we apply the fundamental theorem of calculus. Let G be an anti-
derivative of F , say, G(x) =

∫ x
0
F . The fundamental theorem implies that

F (x) =

∫ x2/2

x/2

F = G
(x2
2

)
−G

(x
2

)
for all x such that F is integrable on [0, x]. Differentiating and applying chain
rule yields

F ′(x) = xG′
(x2
2

)
− 1

2
G′
(x
2

)
= xF

(x2
2

)
− 1

2
F
(x
2

)
.

It follows that F ′(2) = 2F (2)− 1
2
F (1) = 3 as claimed.

continued on page 10
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(c) (6 points) Prove that F is continuous at 2.

We must show that lim
x→2

F (x) = F (2). Since F is constant to the left of 2, we

have lim
x→2−

F (x) = 2, so it suffices to prove lim
x→2+

F (x) = 2, i.e.

lim
h→0+

∫ (2+h)2/2

(2+h)/2

F = 2.

We have∫ (2+h)2/2

(2+h)/2

F =

∫ 2+4k+2k2

1+k

F where k = h/2

=

∫ 2

1+k

F +

∫ 2+4k+2k2

2

F

= 2(1− k) +
∫ 2+4k+2k2

2

F.

Let m = inf
{
f(x) : x ∈ [2, 3]

}
and M = sup

{
f(x) : x ∈ [2, 3]

}
. (Note that

these both exist, since f is integrable, and hence bounded, on [2, 3].) Then
for all h ∈ [0, 1] we have m ≤ f(2 + h) ≤M , whence

m(2h+ h2) = m(4k + 4k2) ≤
∫ 2+4k+2k2

2

F ≤M(4k + 4k2) =M(2h+ h2).

We conclude by the squeeze theorem that

lim
h→0+

∫ 2+4k+2k2

2

F = 0.

Also, we have

lim
h→0+

2(1− k) = lim
h→0+

2− h = 2.

It follows that
lim
x→2+

F (x) = lim
h→0+

F (2 + h)

= lim
h→0+

∫ (2+h)2/2

(2+h)/2

F

= lim
h→0+

(
2(1− k) +

∫ 2+4k+2k2

2

F

)
= 2.

Thus the right- and left-hand limits agree, and we conclude that F is contin-
uous at 2.

Total Marks = 100 points


