Additive Combinatorics Lecture 3

Leo Goldmakher
Scribe: Gal Gross

Jan. 24th, 2014

Today we are going to complete the proof of Solymosi’s theorem. While the theorem is valid over C, we
shall only prove it over R~(. For ease of reference:

Theorem (Solymosi, 2009). For all A, B C R+,
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Last time we defined the notation r4gp5(x) and noted the first key insight in the proof:
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We then established the following lower bound using Cauchy-Schwarz:
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It therefore suffices to prove that
> rpaa(m)® < |A+A|-|B+ B|-log(|A]). (3)
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The significance of the identity is that it admits a geometric interpretation: rp. 4(m) enumerates the
number of (A x B)-lattice points on the line .%,,, through the origin with slope m. In the example below A, B
are sets of positive real numbers having 5 elements each. The lattice A x B is illustrated as well as the line
%, going through the point (a1, b2). Since % only contains a single lattice point, we see that rp- 4(2) = 1.
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Proof of Solymosi’s Theorem Continued. Recall that we wish to prove the upper bound . For aesthetic
reasons, set

r(m) :=r,.,(m)

for the remainder of the proof.

One difficulty in analyzing the sum is that r(m) varies drastically from one line to the next. To remedy
this, we employ a simple but effective trick: divide and conquer. We partition the sum into pieces in such
a way that within each piece, r(m) doesn’t vary too much:
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Suppose the inner sum on the RHS of is maximized at j = J.

Exercise 1. Carefully prove that
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Let M := {m €EB+A 2 <r(m)< 2‘]}. To conclude the proof of Solymosi’s theorem, it suffices to
show that

> r(m)® < |A+A|-|B+B.
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Observe that for any m,m’ € M we have r(m) < 2r(m'); by symmetry of m and m’, we deduce that
r(m) < r(m’). Now, M is a finite set of positive numbers; enumerate its elements

M ={my,ma,...,my,},

where m; < my;41 for all i. We have

D r(m)? <Y r(mi) - r(miga). (6)
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Recall that r(m) has a geometric interpretation: it is the number of lattice points on the line .%,,. Abusing
notation, we take %, to be the set of lattice points lying on the line, i.e.

L ={(z,y) € AX B : y=muz}.

Solymosi’s second key insight concerns the geometry of the sumset %, + %, , .

Exercise 2. Show that:
(a) Any point in %, + %, lies in between the lines .%,, and %,
("g/ﬂmi + gmwl) N (gm, + gm_j+l) = 0.

Conclude that if ¢ # j then

Vi1
(b) For all p € £ + Ly, we haver, ., (p)=1.
(c) Conclude that |2, + L | = | Ll - |Lw|-

Applying the above exercise to @, we have (“U” denotes disjoint union)

Z |$mz|2 < Z |Zmz| ’E’ﬂmi+1} = Z }gmz + Zmi+1’
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= || |(Zn + )| SIAx B+ AxB|=|A+A|-|B+B|.
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Exercise 3. Justify the inequality step (“<”) in the calculation above. Can you come up with an example
of A and B where it’s a tight bound? What about where it’s a poor bound?

Exercise 4. Above, we were a bit sloppy with the ‘extra’ term %,
[One way to do this is to define £,

241+ Fix the proof to account for this.
to be {0} x B. But there are other ways as well.]
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If you reflect back to our first lecture you’d realize that we were focusing on sets of integers; consider
Erdés-Szemerédi Conjecture for example. It turns out, however, that a more natural setting for the type of
questions we’ve been asking are arbitrary fields and abelian groups.

For instance, let (G, +) be an abelian group. Let A C G be finite. How big is |A + A|? We have the trivial
bounds [A| < [A+ A| < 1 |A|(JA| + 1). When is the lower bound tight? In class we interactively came up
with the following:

Proposition. Given an abelian group (G,+) and a finite subset A C G, we have |[A+ A| = |A] iff Ais a
coset of a subgroup of G.

Exercise 5. Prove the above proposition.

Exercise 6. Let (G,+) be an abelian group, and let A C G be finite. Prove that |[A — A| = |A| iff A is a
coset of a subgroup of G.

Note that cosets of subgroups of Z are precisely arithmetic progressions. Thus the proposition above gives
some intuition for the Freiman-Rusza theorem. More generally, suppose that |A + A| < K |A]| for some
constant K (called the “doubling constant” of A). What can we say about A now? If K isn’t too big, then
A should hopefully “look like” a coset.

Until very recently, no one new how to think cohesively about additive combinatorics. Ben Green (one of
the pioneers in the field) commented on this in a 2009 paper. However, a current viewpoint on the field is
the following: Additive Combinatorics is the study of approximate algebraic structures. For example, one
can characterize cosets of subgroups by the condition that they satisfy |A + A| = |A|. What happens when
one weakens this to |A + A| < K|A|? Then A becomes a coset of an approximate subgroup.

* * *

In the final part of the lecture, we considered a lovely result due to Izabella Laba (who, like Solymosi, is a
professor at UBC).

Theorem (Laba, 2001). Let G be an abelian group. If A C G is a finite subset such that [A — A| < 3 |A],
then A — A is a subgroup of G.

Exercise 7. Show (by example) that the doubling constant % in Laba’s Theorem is tight.

Next, we outlined a proof of this result.

Exercise 8. Show that:

1. Ve A—A, |[AN(A+z)| > 5|A|. Conclude that (A+ z) N (A+y) # 0 for any z,y € A — A.

2. Show that A — A is closed under differences. Conclude that it is a subgroup of G.



