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Last lecture we discussed the relation between the ratios |A 4+ A| /|A| and |A — A| /| A|, which are both
sometimes called the “doubling constant” of A. We arrived at the following result:

Theorem 1 (Pliinnecke-Ruzsa). Let A C G with |A + A| < K |A|. Then for all nonnegative integers m,n

we have
ImA —nA| < K™ A

where mA=A+A+ .-+ A.

m times

This is proved in the Lecture 6, except for a key lemma which we prove now. (In fact, this is precisely
the proof we came up with collaboratively last lecture, just tidied up a bit.)

Lemma (Petridis). Suppose A C G is a set such that |[A + A| < K |A|. Choose () # X C A such that the
ratio |[A + X|/|X| is minimized, and denote this ratio by Ky. Then for all B C G we have

A+ B+ X| < Ko|B+X|.

Before proving this, we quickly work out the trivial upper bound (to see what we'’re trying to beat). Fix
an enumeration B = {b1,ba,...,bs}. Then

B—l—X:U({bz‘}—i—X),

whence

A+ B+ X| gZ‘A+{bi}+X‘ :Z‘AJrX‘ = 3" KolX| = Ko|B||X].

This is much weaker than what we're trying to prove (and is too weak to work in the proof of Pliinnecke-
Ruzsa). Note that in the above estimates, only one involves an inequality! This tells us what the problem
is: the sets A + {b;} + X potentially have a lot of overlap we're ignoring.

In the proof below, we’ll get around this in two steps. First, we construct sets X; which approximate
{b;} + X, but which are disjoint. Next, when considering the set A + B + X, we try to remove any new
overlap in the sets A + X;.

Proof. Fix an enumeration B = {b1,bg,...,bs}. Define the following sets recursively

X;={h}+ X,
Xo = ({b2} + X)\ X1

j—1

X5 = ({o} + X\ || X

i=1

(Here LI denotes the disjoint union.) These sets clearly form a partition of B + X, i.e.

4
B—l—X:I_lXi.
i=1



This implies

¢
A+B+X = JA+ X)),
=1

but the sets A + X; have too much overlap for the above to be useful. However, we can do better:
)4
A+B+X =] ((A+ X))\ (A+1), (1)
i=1
where Y; = ({b;} + X) \ X;. To see this, we start by observing the following.
Exercise 1. If y € Y; for some i > 2, then y € X for some j < 1.
Exercise 2. Prove that ,
a+B+x U ((A+ X0\ (A+7),
i=1

[Hint: Given s € A+ B + X, consider the least m such that s € A+ X, ]

Since X; N'Y; = (), it is unlikely that A + Y; is entirely contained in A + X;. This makes it difficult to
appreciate how much of the overlap we’re removing in (1). However, observe that

y4 l
A+B+x cJ((A+xo\@+v)) < ((A+ b} + X))\ (4+ 7)),
i=1

=1

and now we have A+Y; C A+ {b;} + X. This tells us that
A+ B+X| <Y (1A+ (b} +X] - |4+ i)
=D~ (14 +X| - 1A+ - (b))
Now on the one hand, Y; — {b;} C X, so by definition of Ky we have

[ A+ (Vi = {bi})| > KolYi — {bi}].

On the other hand, |A + X| = K| X|. We deduce that

A+ B+X| <Koy (1X] - [¥i - {b:}])
= Ko ) (1% + ()]~ %)
:KOZ\Xi!

=Ky |B+ X|. O
Exercise 3. Modify the above proof to prove the following generalization: Suppose that A and A" are finite
subsets of an abelian group (G, +), with |A| = |A|. If |[A + A’| < K |A], then |mA —nA| < K™t |A|.
(Note: in practice, A’ is usually taken to be A or —A.)

* * *

As mentioned, Pliinnecke-Ruzsa will play a key role in the proof of the Frieman-Ruzsa Theorem. As a
warm-up to Freiman-Ruzsa, we first prove a beautiful result due to Ruzsa: we show that in any abelian
group of bounded torsion, the only sets of small doubling are essentially subgroups. More precisely:



Theorem 2 (Ruzsa). Suppose (G, +) is an abelian group with exponent® r, and A C G has small doubling,
say, |A + A| < K |A|. Then there exists a subgroup H < G such that

H2A and  |H| <k |Al.

Remark. Recall that the subscripts on the < indicate that the implicit constant is allowed to depend on
r and K, but on nothing else. In particular, the constant does not depend on |A| at all. Thus, the result
asserts that if A has small doubling, then it’s possible to tack a few elements onto A to make it into a
subgroup. (Note that one can make any set into a subgroup by adding elements to it; the point of this
theorem is that one doesn’t have to add many element to do so, so long as the set has small doubling.)

Before proceeding to the formal proof, let me sketch the strategy. Recall that (A) denotes the subgroup of
G generated by A (i.e. the smallest subgroup of G containing A). Given A, how does one actually generate
(A)? By adding and subtracting elements of A from each other until you stop getting new elements. In
other words,

(4) = |J (mA-na).

m,n>0

In particular, A — A C (A), but as you can see from above, |A — A| is typically much smaller than (A). It
is therefore somewhat surprising that we can approximate a reverse inclusion: we will construct a small set
X such that (4) C (A — A) + (X). Because X is small and G has bounded torsion, |(X)| must itself be
fairly small, whence |(A)| ~ |A — A|. But if A has small doubling, then |A — A| ~ |A]|, so we deduce that
|(A)| ~ |A| as claimed. It is worth pointing out that all of this strongly uses the hypotheses of the theorem;
for example, the fact that we can construct a small X depends on the assumption that A has small doubling.

Proof. We shall prove the theorem for the special case where A is symmetric (i.e. A = —A); the proof of
the general case is left as an exercise (see below).
Choose X C 34 to be maximal such that the sets A+ {z} are pairwise disjoint over all z € X.

Exercise 4. Prove that 34 C 2A + X. [Hint: Pick an arbitrary t € 3A. Then A + {t} must intersect one
of the sets A+ {z} (why?). Conclude.]

Adding A to both sides and simplifying, we find

4A C3A+ X C2A+2X.
Adding A to both sides of this inclusion and simplifying yields

5A C3A+2X C2A+ 3X.

Continuing this process, we obtain
nAC2A+(n—2)X (2)
for any n > 3.

Exercise 5. Prove that (A) = U nA.
n>3

Taking the union of the inclusions (2) over all n > 3, we deduce that

(A) C 24 + (X).

Exercise 6. Prove that [(X)| < rIXI. Deduce that
(A < Kol |4,

To conclude the proof, it suffices to show that |X| <, 1, i.e. that the size of X does not depend on the
size of A. (Note that this is a pretty fantastic claim, since X is defined in terms of A!) Since X C 3A, it is
tempting to applying Pliinnecke-Ruzsa directly, but this only gives the bound |X| < K3|A|, which is much
too weak for our purposes. The following exercise shows that we can do much better.

*Recall that the exponent of a group is the smallest positive integer e such that g+ g+ ---+ g =0 for any g € G.
| S

e



Exercise 7. Prove that |X| < K*. [Hint: Apply Plimnecke-Ruzsa to the set A+ X ]
Putting all the above together, we conclude that

4
[(A) < KAl

This concludes the proof of Ruzsa’s theorem for symmetric A. For the general case, see the exercise
below. O

Exercise 8. Prove the general case of the theorem (where A is not symmetric). [Hint: Let X C 2A — A be
mazximal such that A+ {x} are all disjoint.]

Note that we did better than simply prove |H| <, i |Al; we've shown that |H| < KrK" | A]. Is this bound
optimal?

Conjecture 1 (Ruzsa). Ruzsa’s Theorem holds with |H| < r©& |A|, for some constant C.

This conjecture is best-possible, as can be seen by the following simple example. Let p be some prime number
and consider G = (]F;L, +). This is an abelian group with exponent r. Let U,V be two subgroups such that
UNV ={0}. Let V' = {vy,...,v} be a set of linearly independent vectors from V. Take A :=U x V’, so
that [A| = ¢|U|. Since A+ A=U x {v; +v; : 1 <i < j <}, we have |[A+ A| = |U| - 3¢(¢ +1). Thus,

A+ A 1

However, it is easy to see that
(A) =U x span V' =U x (Fpv1 + Fpvg + - - + Fpup)
so that
1 pz
(A =Ul-p" = 14].
Now, simply choose ¢ = 2K — 1. Since (A) is the smallest subgroup containing A, we must have

p2E-1
H > Al.
> o1 Al

This shows that the bound in Ruzsa’s conjecture is in optimal form. In 2012, Lovett and Zohar showed that
the conjecture holds for any prime exponent.
We conclude by discussing an open question which has recently generated considerable interest.

Conjecture 2 (Polynomial Freiman-Ruzsa). Let (G, +) be an abelian group with exponent r. Let A C G.
If |A+ A| < K |A|, then there exists a constant C, > 0 and a subset A’ C A such that

o [A]> L (4], and
o [(A)] < KO|A.

The way to think about this theorem is that A’ is simply A minus a small number of “throw-away”
elements. As we’ve seen with our example above, if we restrict ourselves to A, the bound must be at least
exponential in K. Polynomial Freiman-Ruzsa conjectures that if we allow ourselves to throw away some
small number of elements from A, we can improve the bound to being polynomial in K. This conjecture,
if true, would have significant consequences (both within additive combinatorics and in applications to
computer science).



