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Last time we proved Bogolyubov’s Lemma, which asserts that given any decently large subset A ⊆ ZN , the
set 2A−2A contains a low-dimensional Bohr set. We also showed that low-dimensional Bohr sets are pretty
big. The purpose of today’s lecture is to demonstrate that any low-dimensional Bohr set contains a large
low-dimensional proper gAP. Before launching into this, let’s zoom out and recall where we are in the proof
of Freiman-Ruzsa.

Freiman-Ruzsa Theorem

Ruzsa gAPs in Z

Ruzsa gAPs in ZN

Bogolyubov’s Lemma

Lecture 10

Bohr-to-gAP Proposition
Today’s lecture

Ruzsa’s Reduction (Lecture 8)

Freiman isomorphisms

How do we find a gAP inside a Bohr set? We warm up with a toy case. Recall that a 1-dimensional Bohr
set has the form

B({r}, α) =
{
x ∈ ZN :

∥∥∥rx
N

∥∥∥ ≤ α} ,
where ‖·‖ denotes the distance to the nearest integer. I claim that B({r}, α) contains a long AP.

Exercise 1.

(a) Prove that ‖t‖ ≤ |t| for all t ∈ R.

(b) Prove that ‖a/N‖ = ‖b/N‖ whenever a ≡ b (mod N).

The above exercise implies that for any x ∈ Z,∥∥∥rx
N

∥∥∥ ≤ ∣∣∣∣rx (mod N)

N

∣∣∣∣ .
If we’re lucky, we can find some x0 for which

∣∣∣∣rx0 (mod N)

N

∣∣∣∣ is very small, so that x0 and its multiples form

an arithmetic progression inside B({r}, α). So our problem becomes: how do we minimize rx (mod N)?
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Consider the group 〈r,N〉 := rZ + NZ. A classical result (often attributed to Bézout) asserts that
〈r,N〉 = 〈g〉, where g = gcd(r,N). It follows that there exist x0, y0 ∈ Z such that rx0 +Ny0 = g, whence

rx0 ≡ g (mod N). (1)

Applying Exercise 1, we see that ∥∥∥∥krx0N

∥∥∥∥ ≤ ∣∣∣∣kgN
∣∣∣∣ ,

so kx0 ∈ B({r}, α) whenever |k| ≤ Nα
g . We have thus found an arithmetic progression inside our Bohr set:

Q :=

{
kx0 (mod N) : |k| ≤ Nα

g

}
.

How big is Q? This isn’t a silly question: it’s possible that not all of its elements are distinct (mod N). We
will show that, so long as α < 1/2, Q is a proper AP.

Suppose two elements of Q are indistinguishable, say

kx0 ≡ k′x0 (mod N).

We can’t cancel x0, since it might not be coprime to N . Instead we multiply both sides by r; (1) implies

kg ≡ k′g (mod N),

whence N | (k − k′)g. Now by definition, |k|, |k′| ≤ αN
g . Assuming α < 1/2, we have that |(k − k′)g| < N ,

and hence that (k − k′)g = 0. We conclude that k = k′, which shows that Q is a proper AP.

To summarize, given any Bohr set B({r}, α) ⊆ ZN with α < 1/2, it must contain a proper arithmetic

progression Q of size 2
⌊
Nα
g

⌋
+ 1.

Exercise 2. Prove that 2 bxc+ 1 ≥ x for all x ≥ 0.

Thus, |Q| ≥ Nα
g . In particular, if N is prime and r 6= 0 then g = 1, in which case B({r}, α) contains a

proper AP of size at least αN . This motivates the following generalization.

Proposition (Bohr-to-gAP). Let N be a prime, α < 1/2, and R ⊆ ZN with d := |R| ≥ 2. Then the Bohr
set B(R,α) contains a proper generalized arithmetic progression Q of dimension d and size |Q| �d α

dN .

The proof is similar to the 1-dimensional case. Recall that, inspired by Exercise 1, we first found an x ∈ ZN
which minimizes rx (mod N); we then used x to generate an arithmetic progression inside our Bohr set.
Similarly, in the d-dimensional case, we look for x ∈ ZN which makes rx (mod N) small, but now we need
this to hold for every r ∈ R simultaneously. We can no longer ask for the x which minimizes, since there
are multiple r’s. Instead, we assemble all d elements of R into a single vector ~r ∈ Zd. We then search for
x ∈ ZN which minimizes the magnitude of x~r (mod N). In fact, we will be able to find multiple scalars
x1, x2, . . . , xd which make x~r (mod N) small. Finally, we will use these to generate a proper gAP inside our
Bohr set.

An analysis of the 1-dimensional proof shows that, beyond the initial set-up, the only tricky step was
obtaining a lower bound on the size of the AP. The same applies to the general case: to get a bound on the
size we use a deep theorem of Minkowski’s from the Geometry of Numbers. We will apply his theorem in a
‘soft’ way in our proof; a more judicious application of Minkowski’s theorem would yield the precise lower
bound

|Q| ≥
(α
d

)d
N.

For our application we can get away with the less precise bound stated in the Proposition, because Bo-
golyubov’s Lemma allows us to get a strong upper bound on the dimension d of the Bohr set.
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Proof of Bohr-to-gAP Proposition. Given a Bohr set B(R,α), enumerate R = {r1, r2, . . . , rd} and set

~r := (r1, r2, . . . , rd).

Consider the subgroup of Zd generated by NZd and ~r, namely

Λ := 〈~r,N~e1, N~e2, . . . , N~ed〉 = Z~r +NZ~e1 +NZ~e2 + · · ·+NZ~ed

where {~e1, ~e2, . . . , ~ed} denotes the standard basis for Zd. Let ~g1 be the shortest1 nonzero vector in Λ. Let
~g2 be the shortest nonzero vector in Λ which is linearly independent of ~g1 (over Rd). In general, for j ≤ d,
let ~gj be the shortest nonzero vector in Λ which is linearly independent of ~g1, ~g2, . . . , ~gj−1 . In this way we
find d linearly independent vectors ~gj ∈ Λ.

Exercise 3. Is Λ = 〈~g1, ~g2, . . . , ~gd〉? Either prove that it is, or show by example that it might not be.

Since ~gi ∈ Λ, by the definition of Λ there must exist xi ∈ Z such that

~gi ≡ xi~r (mod N). (2)

(This is the analogue of (1) from the one-dimensional case.) Since the vectors ~gi are short, linear combina-
tions of them with small coefficients will also be fairly short. We consider this more carefully. Let

Q := {k1~g1 + k2~g2 + · · ·+ kd~gd : |ki| ≤ Ki} ,

where the bounds Ki will be chosen later. For any ~q = (q1, q2, . . . , qd) ∈ Q, (2) implies

~q ≡ (k1x1 + k2x2 + · · ·+ kdxd)~r (mod N),

whence (looking at the jth coefficient on both sides) we obtain∥∥∥∥(k1x1 + k2x2 + · · ·+ kdxd)rj
N

∥∥∥∥ =
∥∥∥ qj
N

∥∥∥ ≤ |~q|
N
≤ 1

N

∑
i

|ki| |~gi| ≤
1

N

∑
i

Ki |~gi| . (3)

We can make the right hand side small by choosing Ki appropriately, e.g.

Ki :=
αN

d |~gi|
.

This bounds the right hand side of (3) by α, and thus produces a gAP inside of our Bohr set:

Q :=

{
k1x1 + k2x2 + · · ·+ kdxd (mod N) : |ki| ≤

αN

d |~gi|

}
⊆ B(R,α).

It remains only to show that Q is proper, and then estimate its size.

Suppose two elements of Q are indistinguishable (mod N), say,∑
i

kixi ≡
∑
i

k′ixi (mod N).

As in the 1-dimensional case, we multiply both sides by ~r and apply (2) to obtain∑
i

ki~gi ≡
∑
i

k′i~gi (mod N).

I claim that the two sides of this congruence are actually equal, not just congruent modulo N . For brevity,
set ~v :=

∑
ki~gi and ~w :=

∑
k′i~gi, and write ~v = (v1, v2, . . . , vd) and ~w = (w1, w2, . . . , wd).

Exercise 4. Prove that |vj |, |wj | ≤ αN .

1If there are several such vectors, pick any one of them.
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Since α < 1/2 by assumption and vj ≡ wj (mod N) for all j, the exercise implies that vj = wj for all j. It
follows that ~v = ~w, or in other words, ∑

i

ki~gi =
∑
i

k′i~gi.

Since the vectors ~gi are linearly independent, we conclude that ki = k′i for every i. We have thus proved
that Q is a proper gAP. This also implies that dimQ = d.

The final step is to estimate the size of Q. By properness of Q and Exercise 2, we see

|Q| =
d∏
j=1

(
2

⌊
αN

d |~gj |

⌋
+ 1

)
≥

d∏
j=1

αN

d |~gj |
=

(
αN

d

)d d∏
j=1

|~gj |

−1 .
A consequence of Minkowski’s second theorem from the Geometry of Numbers is that

d∏
j=1

|~gj | �d N
d−1.

(We will explain this step next lecture.) This concludes the proof of the Bohr-to-gAP proposition.
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