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Last time we proved Bogolyubov’s Lemma, which asserts that given any decently large subset A C Zy, the
set 2A — 2 A contains a low-dimensional Bohr set. We also showed that low-dimensional Bohr sets are pretty
big. The purpose of today’s lecture is to demonstrate that any low-dimensional Bohr set contains a large
low-dimensional proper gAP. Before launching into this, let’s zoom out and recall where we are in the proof
of Freiman-Ruzsa.

Freiman-Ruzsa Theorem

Ruzsa’s Reduction (Lecture 8)

Ruzsa gAPs in Z

Freiman isomorphisms

Ruzsa gAPs in Zy

N

Bogolyubov’s Lemma Bohr-to-gAP Proposition

Lecture 10 Today’s lecture

How do we find a gAP inside a Bohr set? We warm up with a toy case. Recall that a 1-dimensional Bohr

set has the form o
B({r}, a) = {:1: €ZN: HWH < a},

where ||-|| denotes the distance to the nearest integer. I claim that B({r}, «) contains a long AP.
Exercise 1.
(a) Prove that ||t|| < [|¢| for all ¢t € R.

(b) Prove that |a/N|| = ||b/N|| whenever a = b (mod N).

The above exercise implies that for any x € 7Z,

H H ra (mod rz (mod N)
= N .
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If we’re lucky, we can find some x¢ for which is very small, so that xg and its multiples form

N
an arithmetic progression inside B({r}, a). So our problem becomes: how do we minimize rx (mod N)?



Consider the group (r,N) := rZ + NZ. A classical result (often attributed to Bézout) asserts that
(r, Ny = (g), where g = ged(r, N). It follows that there exist zg,yo € Z such that rzo + Nyp = g, whence

reg = ¢ (mod N). (1)

so kxzg € B({r}, a) whenever |k| < %. We have thus found an arithmetic progression inside our Bohr set:

Applying Exercise 1, we see that
krxg

N

<"“9,
—|N

Q= {lmo (mod N) : k| < ]\;a}

How big is Q7 This isn’t a silly question: it’s possible that not all of its elements are distinct (mod N). We
will show that, so long as a < 1/2, @ is a proper AP.

Suppose two elements of () are indistinguishable, say
kxo = K'x¢ (mod N).
We can’t cancel zg, since it might not be coprime to N. Instead we multiply both sides by r; (1) implies
kg =k'g (mod N),

whence N | (k — k")g. Now by definition, |k|, |k/| < %. Assuming « < 1/2, we have that |(k — k')g| < N,
and hence that (k — k")g = 0. We conclude that k£ = k', which shows that @ is a proper AP.

To summarize, given any Bohr set B({r},a) C Zy with a < 1/2, it must contain a proper arithmetic

progression @ of size 2 {%J + 1.

Exercise 2. Prove that 2 |z| + 1 > z for all z > 0.

Thus, |Q| > %. In particular, if N is prime and r # 0 then g = 1, in which case B({r}, «) contains a
proper AP of size at least a/N. This motivates the following generalization.

Proposition (Bohr-to-gAP). Let N be a prime, a < 1/2, and R C Zy with d := |R| > 2. Then the Bohr
set B(R, a) contains a proper generalized arithmetic progression @ of dimension d and size |Q| >4 a?N.

The proof is similar to the 1-dimensional case. Recall that, inspired by Exercise 1, we first found an z € Zy
which minimizes rx (mod N); we then used z to generate an arithmetic progression inside our Bohr set.
Similarly, in the d-dimensional case, we look for x € Zy which makes rz (mod N) small, but now we need
this to hold for every » € R simultaneously. We can no longer ask for the z which minimizes, since there
are multiple 7’s. Instead, we assemble all d elements of R into a single vector 7 € Z%. We then search for
x € Zy which minimizes the magnitude of x7 (mod N). In fact, we will be able to find multiple scalars
21,9, ...,2Tq which make z7¥ (mod N) small. Finally, we will use these to generate a proper gAP inside our
Bohr set.

An analysis of the 1-dimensional proof shows that, beyond the initial set-up, the only tricky step was
obtaining a lower bound on the size of the AP. The same applies to the general case: to get a bound on the
size we use a deep theorem of Minkowski’s from the Geometry of Numbers. We will apply his theorem in a
‘soft” way in our proof; a more judicious application of Minkowski’s theorem would yield the precise lower
bound

Q| > (%)dN.

For our application we can get away with the less precise bound stated in the Proposition, because Bo-
golyubov’s Lemma allows us to get a strong upper bound on the dimension d of the Bohr set.



Proof of Bohr-to-gAP Proposition. Given a Bohr set B(R, «), enumerate R = {ry,rs,...,rq} and set
7= (11,72, ..., 7q)-
Consider the subgroup of Z? generated by NZ% and 7, namely
A= (F,Néi,Néa,...,Néy) = ZF + NZé + NZé> + - -- + NZéy

where {€1,é,...,¢;} denotes the standard basis for Z?. Let g; be the shortest! nonzero vector in A. Let
J be the shortest nonzero vector in A which is linearly independent of 7 (over R?). In general, for j < d,
let gj be the shortest nonzero vector in A which is linearly independent of g1, g2, ...,g,_,. In this way we
find d linearly independent vectors g; € A.

Exercise 3. Is A = (§1, G2, ..., dq)? Either prove that it is, or show by example that it might not be.

Since g; € A, by the definition of A there must exist x; € Z such that
gi = x;7 (mod N). (2)

(This is the analogue of (1) from the one-dimensional case.) Since the vectors g; are short, linear combina-
tions of them with small coefficients will also be fairly short. We consider this more carefully. Let

Q = {k1g1 + kago + - - - + kaga - |ki| < Ki},
where the bounds K; will be chosen later. For any ¢ = (q1,¢2,...,q4) € Q, (2) implies
q= (k‘lxl + koxo + - + k‘dl‘d)F (Inod N),

whence (looking at the j*® coefficient on both sides) we obtain
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We can make the right hand side small by choosing K; appropriately, e.g.
alN
dlgl’

This bounds the right hand side of (3) by «, and thus produces a gAP inside of our Bohr set:

Ki =

N
Q= {klxl + kaxo 4 - - - + kg (mod N) : |k;| < =

— » C B(R, a).
d|gir} (8, 0)

It remains only to show that () is proper, and then estimate its size.

Suppose two elements of @) are indistinguishable (mod N), say,
Z kix; = Z klz; (mod N).
i i
As in the 1-dimensional case, we multiply both sides by 7 and apply (2) to obtain
Zkigi = Zk;g} (mod N).
i i

I claim that the two sides of this congruence are actually equal, not just congruent modulo N. For brevity,
set U:= ) k;g; and W := ) klg;, and write 0 = (v, v2,...,v4) and @ = (wy, wa, ..., wy).

Exercise 4. Prove that |v;], |w;| < aN.

'If there are several such vectors, pick any one of them.



Since a < 1/2 by assumption and v; = w; (mod N) for all j, the exercise implies that v; = w; for all j. It
follows that ¢’ = ), or in other words,
> kigi = Z kigi-
i

Since the vectors g; are linearly independent, we conclude that k; = k. for every i. We have thus proved
that @ is a proper gAP. This also implies that dim Q = d.

The final step is to estimate the size of (). By properness of () and Exercise 2, we see
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A consequence of Minkowski’s second theorem from the Geometry of Numbers is that

d
I1 151 <a N1
j=1

(We will explain this step next lecture.) This concludes the proof of the Bohr-to-gAP proposition. O



