LECTURE 15: SUMMARY

Today we continued exploring infinite series, in particular proving two important convergence
tests: the root test and the ratio test.

Theorem 1 (Root Test). Suppose (a,) is a sequence of non-negative real numbers, and that

o = lim al/™ exists.
n—oo

o I[fa <1, then Z a, converges.

n=1

o [fa>1, then Z ay, diverges.

n=1

Before proving this, we talked about what happens when o« = 1. David pointed out that %
diverges while > n_12 converges, but for both series @« = 1. This shows that the Root Test is too
crude to give information in the case o = 1.

Proof. First, the case o < 1. Pick 5 € («, 1). From the definition of «, it follows that there exists
a large K such that anl" < B for all n > K. It follows that for all M > K,

0< Z a, < Z g".

K<n<M K<n<M
Let
N
Sy = E Q.-
n=1

I claim that the sequence (Sy) is bounded and monotonic (and hence converges, by the MCT).
Monotonicity is clear, since a,, > 0 for all n by hypothesis. So, it suffices to prove boundedness.
First note that Sx is some constant (since K is constant), and that we have 0 < Sy < Sk for all
N < K. For N > K, we have

OSSN:SK—F Z Ay, < Z 5”.

K<n<N K<n<N

From a prior lecture, we know that the geometric series
o0
2.8
n=1
converges. It follows that partial sums of this geometric series are bounded. But this implies that

2. 7

K<n<N
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are bounded for all N > K, as well. (Make sure you understand why!) We have therefore shown
that (Sy) is bounded and monotone; we conclude that it converges.

We now consider the case & > 1. Then ay/” > 1 for all sufficiently large n, whence a,, > 1 for all
large n. It follows that a,, 4 0 as n — oo, so the series cannot converge. U

The above theorem is nice in principle, but somewhat awkward to apply in practice (taking nth
roots can be tricky). We now state a convergence test which is weaker, but more user-friendly.

Theorem 2 (Ratio Test). Suppose (a,) is a sequence of non-negative real numbers, and that
. a .
o= lim L exists.
n—oo an

o I[fa <1, then Z a, converges.

n=1
o I[fa>1, then Z ay, diverges.

n=1

Proof. We first consider the case v < 1. As in the proof of the root test, pick 5 € («, 1). From the
definition of «, there exists /N such that

Qi1 oy
Qn

for all n > N. It follows that

any1 < Pay

ani2 < fayyr < 52%/

an+3 < fayiz < Bay
and, more generally, that for all M > N,

ANtk < BkCLN-

Thus, for all K € N we have

N+K
D m=) at ) a
n=1 n<N N<n<N+K
k
< E an + an E 6
n<N k<K

The first sum is a constant, while the second is a geometric series. We therefore conclude that the
sequence of partial sums
M
S M = Z Qp,
n=1

is bounded. It is also monotonic (since a,, > 0). The MCT now implies that (S,,) converges.

Next, consider the case o > 1. In this case, there exists N such that a,,.1 > a,, foralln > N. In
particular, a,, /4 0 as n — oo, so the series cannot converge. U



