
LECTURE 15: SUMMARY

Today we continued exploring infinite series, in particular proving two important convergence
tests: the root test and the ratio test.

Theorem 1 (Root Test). Suppose (an) is a sequence of non-negative real numbers, and that
α := lim

n→∞
a1/nn exists.

• If α < 1, then
∞∑
n=1

an converges.

• If α > 1, then
∞∑
n=1

an diverges.

Before proving this, we talked about what happens when α = 1. David pointed out that
∑

1
n

diverges while
∑

1
n2 converges, but for both series α = 1. This shows that the Root Test is too

crude to give information in the case α = 1.

Proof. First, the case α < 1. Pick β ∈ (α, 1). From the definition of α, it follows that there exists
a large K such that a1/nn < β for all n > K. It follows that for all M > K,

0 ≤
∑

K<n≤M

an <
∑

K<n≤M

βn.

Let

SN :=
N∑

n=1

an.

I claim that the sequence (SN) is bounded and monotonic (and hence converges, by the MCT).
Monotonicity is clear, since an ≥ 0 for all n by hypothesis. So, it suffices to prove boundedness.
First note that SK is some constant (since K is constant), and that we have 0 ≤ SN ≤ SK for all
N ≤ K. For N > K, we have

0 ≤ SN = SK +
∑

K<n≤N

an <
∑

K<n≤N

βn.

From a prior lecture, we know that the geometric series
∞∑
n=1

βn

converges. It follows that partial sums of this geometric series are bounded. But this implies that∑
K<n≤N

βn
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are bounded for all N ≥ K, as well. (Make sure you understand why!) We have therefore shown
that (SN) is bounded and monotone; we conclude that it converges.

We now consider the case α > 1. Then a1/nn > 1 for all sufficiently large n, whence an > 1 for all
large n. It follows that an 6→ 0 as n→∞, so the series cannot converge. �

The above theorem is nice in principle, but somewhat awkward to apply in practice (taking nth
roots can be tricky). We now state a convergence test which is weaker, but more user-friendly.

Theorem 2 (Ratio Test). Suppose (an) is a sequence of non-negative real numbers, and that
α := lim

n→∞

an+1

an
exists.

• If α < 1, then
∞∑
n=1

an converges.

• If α > 1, then
∞∑
n=1

an diverges.

Proof. We first consider the case α < 1. As in the proof of the root test, pick β ∈ (α, 1). From the
definition of α, there exists N such that

an+1

an
< β

for all n ≥ N . It follows that
aN+1 < βaN

aN+2 < βaN+1 < β2aN

aN+3 < βaN+2 < β3aN

and, more generally, that for all M > N ,

aN+k < βkaN .

Thus, for all K ∈ N we have
N+K∑
n=1

an =
∑
n≤N

an +
∑

N<n≤N+K

an

<
∑
n≤N

an + aN
∑
k≤K

βk

The first sum is a constant, while the second is a geometric series. We therefore conclude that the
sequence of partial sums

SM :=
M∑
n=1

an

is bounded. It is also monotonic (since an ≥ 0). The MCT now implies that (SM) converges.

Next, consider the case α > 1. In this case, there exists N such that an+1 > an for all n ≥ N . In
particular, an 6→ 0 as n→∞, so the series cannot converge. �


