LECTURE 15: SUMMARY

Today we continued exploring infinite series, in particular proving two important convergence tests: the root test and the ratio test.

Theorem 1 (Root Test). Suppose (a_n) is a sequence of non-negative real numbers, and that $\alpha := \lim_{n \to \infty} a_n^{1/n}$ exists.

- If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Before proving this, we talked about what happens when $\alpha=1$. David pointed out that $\sum \frac{1}{n}$ diverges while $\sum \frac{1}{n^2}$ converges, but for both series $\alpha=1$. This shows that the Root Test is too crude to give information in the case $\alpha=1$.

Proof. First, the case $\alpha < 1$. Pick $\beta \in (\alpha, 1)$. From the definition of α , it follows that there exists a large K such that $a_n^{1/n} < \beta$ for all n > K. It follows that for all M > K,

$$0 \le \sum_{K < n \le M} a_n < \sum_{K < n \le M} \beta^n.$$

Let

$$S_N := \sum_{n=1}^N a_n.$$

I claim that the sequence (S_N) is bounded and monotonic (and hence converges, by the MCT). Monotonicity is clear, since $a_n \ge 0$ for all n by hypothesis. So, it suffices to prove boundedness. First note that S_K is some constant (since K is constant), and that we have $0 \le S_N \le S_K$ for all $N \le K$. For N > K, we have

$$0 \le S_N = S_K + \sum_{K < n \le N} a_n < \sum_{K < n \le N} \beta^n.$$

From a prior lecture, we know that the geometric series

$$\sum_{n=1}^{\infty} \beta^n$$

converges. It follows that partial sums of this geometric series are bounded. But this implies that

$$\sum_{K < n \le N} \beta^n$$

Date: March 5th, 2013.

are bounded for all $N \ge K$, as well. (Make sure you understand why!) We have therefore shown that (S_N) is bounded and monotone; we conclude that it converges.

We now consider the case $\alpha > 1$. Then $a_n^{1/n} > 1$ for all sufficiently large n, whence $a_n > 1$ for all large n. It follows that $a_n \not\to 0$ as $n \to \infty$, so the series cannot converge.

The above theorem is nice in principle, but somewhat awkward to apply in practice (taking nth roots can be tricky). We now state a convergence test which is weaker, but more user-friendly.

Theorem 2 (Ratio Test). Suppose (a_n) is a sequence of non-negative real numbers, and that $\alpha := \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ exists.

- If $\alpha < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- If $\alpha > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. We first consider the case $\alpha < 1$. As in the proof of the root test, pick $\beta \in (\alpha, 1)$. From the definition of α , there exists N such that

$$\frac{a_{n+1}}{a_n} < \beta$$

for all $n \geq N$. It follows that

$$a_{N+1} < \beta a_N$$

$$a_{N+2} < \beta a_{N+1} < \beta^2 a_N$$

$$a_{N+3} < \beta a_{N+2} < \beta^3 a_N$$

and, more generally, that for all M > N,

$$a_{N+k} < \beta^k a_N.$$

Thus, for all $K \in \mathbb{N}$ we have

$$\sum_{n=1}^{N+K} a_n = \sum_{n \le N} a_n + \sum_{N < n \le N+K} a_n$$

$$< \sum_{n \le N} a_n + a_N \sum_{k \le K} \beta^k$$

The first sum is a constant, while the second is a geometric series. We therefore conclude that the sequence of partial sums

$$S_M := \sum_{n=1}^M a_n$$

is bounded. It is also monotonic (since $a_n \geq 0$). The MCT now implies that (S_M) converges.

Next, consider the case $\alpha > 1$. In this case, there exists N such that $a_{n+1} > a_n$ for all $n \ge N$. In particular, $a_n \not\to 0$ as $n \to \infty$, so the series cannot converge.