LECTURE 20: SUMMARY

We started by proving the Cauchy-Schwarz inequality:

$$\left| \sum_{i} a_i b_i \right| \le \left(\sum_{i} a_i^2 \right)^{1/2} \left(\sum_{i} b_i^2 \right)^{1/2}$$

for all a_i , b_i . Actually, we proved a rather stronger result:

Theorem 1 (Hölder's inequality). Given p, q > 0 such that 1/p + 1/q = 1. Then

$$\left|\sum_{i} a_{i} b_{i}\right| \leq \left(\sum_{i} a_{i}^{p}\right)^{1/p} \left(\sum_{i} b_{i}^{q}\right)^{1/q}.$$

Proof. Throughout, ETS shall stand for Enough To Show.

By the triangle inequality, ETS

$$\sum_{n} |a_n b_n| \le \left(\sum_{k} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k} |b_k|^q\right)^{\frac{1}{q}}$$

Let $A_n = |a_n|^p$ and $B_n = |b_n|^q$. So ETS

$$\sum_{n} A_n^{1/p} B_n^{1/q} \le \left(\sum_{k} A_k\right)^{\frac{1}{p}} \left(\sum_{k} B_k\right)^{\frac{1}{q}}$$

whence ETS

$$\sum_{n} \left(\frac{A_n}{\sum A_k} \right)^{\frac{1}{p}} \left(\frac{B_n}{\sum B_k} \right)^{\frac{1}{q}} \le 1$$

Let x = 1/p. Then 1/q = 1 - x, so ETS that for all $x \in [0, 1]$,

$$\sum_{n} \left(\frac{A_n}{\sum A_k} \right)^x \left(\frac{B_n}{\sum B_k} \right)^{1-x} \le 1$$

Let

$$\alpha_n = \frac{A_n}{\sum A_k}$$
 and $\beta_n = \frac{B_n}{\sum B_k}$

Then ETS that $\forall x \in [0,1]$ and $\forall \alpha_n, \beta_n$ positive such that $\sum \alpha_n = \sum \beta_n = 1$,

$$f(x) := \sum_{n} \beta_n \left(\frac{\alpha_n}{\beta_n}\right)^x \le 1$$

Date: March 21st, 2013.

Since f(0) = f(1) = 1, ETS that f(x) is concave up on [0, 1]. Since $\beta_n > 0$, ETS

$$f_n(x) := \left(\frac{\alpha_n}{\beta_n}\right)^x$$

is concave up on [0, 1], whence ETS that $g(x) := a^x$ is concave up on [0, 1], where a is any positive constant. Finally, we're done ETSing: $g''(x) = a^x (\log a)^2 \ge 0$.

Taking p = q = 2 immediately yields the Cauchy-Schwarz inequality. This, in turn, implies that the Euclidean metric satisfies the triangle inequality (and hence, deserves the title 'metric').

Recall from last time the following examples of metric spaces.

- (i) The real line \mathbb{R} , with metric d(x,y) := |x y|.
- (ii) n-dimensional space \mathbb{R}^n , with the "standard" (or "Euclidean") metric

$$d(x,y) := \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{1/2}.$$

(iii) n-dimensional space \mathbb{R}^n , with the "taxicab" metric

$$d(x,y) := \sum_{i=1}^{n} |x_i - y_i|.$$

Today we added a few more to the list:

(iv) n-dimensional space \mathbb{R}^n , with the "chessboard" metric

$$d(x,y) := \max_{i} |x_i - y_i|.$$

This was relatively straightforward to verify as a metric, although checking triangle inequality required some notation. I then also hinted at where the name comes from: consider a chessboard, and define the distance between two squares to be the fewest number of steps required for a king to travel from one to the other.

(v) *n*-dimensional space \mathbb{R}^n , with the "British Rail" metric

$$d(x,y) := |x| + |y|$$

This actually isn't a metric as written (why not?); fortunately, we will be able to patch it up next lecture and make it a metric. The name comes from the fact that to travel from any city to any other in the UK, one must go through London. Similarly, this metric measures the distance between x and y by measuring the distance from x to the 'origin', and then the distance from the origin to y.

(vi) Any non-empty set X, with the "discrete" metric

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y. \end{cases}$$

This metric is not particularly refined, but demonstrates that any space is metrizable.

(vii) The space $\mathcal{C}_{[0,1]}:=\{f:[0,1]\to\mathbb{R}, \text{ a continuous function}\}$, with the metric $d(f,g)=\max_{t\in[0,1]}|f(t)-g(t)|.$

We will discuss this example more next lecture.