
LECTURE 20: SUMMARY

We started by proving the Cauchy-Schwarz inequality:∣∣∣∣∣∑
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for all ai, bi. Actually, we proved a rather stronger result:

Theorem 1 (Hölder’s inequality). Given p, q > 0 such that 1/p+ 1/q = 1. Then
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Proof. Throughout, ETS shall stand for Enough To Show.
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Let x = 1/p. Then 1/q = 1− x, so ETS that for all x ∈ [0, 1],∑
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Since f(0) = f(1) = 1, ETS that f(x) is concave up on [0, 1]. Since βn > 0, ETS

fn(x) :=

(
αn

βn

)x

is concave up on [0, 1], whence ETS that g(x) := ax is concave up on [0, 1], where a is any positive
constant. Finally, we’re done ETSing: g′′(x) = ax (log a)2 ≥ 0. �

Taking p = q = 2 immediately yields the Cauchy-Schwarz inequality. This, in turn, implies that
the Euclidean metric satisfies the triangle inequality (and hence, deserves the title ‘metric’).

Recall from last time the following examples of metric spaces.

(i) The real line R, with metric d(x, y) := |x− y|.

(ii) n-dimensional space Rn, with the “standard” (or “Euclidean”) metric

d(x, y) :=

(
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|xi − yi|2
)1/2

.

(iii) n-dimensional space Rn, with the “taxicab” metric

d(x, y) :=
n∑

i=1

|xi − yi|.

Today we added a few more to the list:

(iv) n-dimensional space Rn, with the “chessboard” metric

d(x, y) := max
i
|xi − yi|.

This was relatively straightforward to verify as a metric, although checking triangle inequality
required some notation. I then also hinted at where the name comes from: consider a chessboard,
and define the distance between two squares to be the fewest number of steps required for a king
to travel from one to the other.

(v) n-dimensional space Rn, with the “British Rail” metric

d(x, y) := |x|+ |y|
This actually isn’t a metric as written (why not?); fortunately, we will be able to patch it up next
lecture and make it a metric. The name comes from the fact that to travel from any city to any other
in the UK, one must go through London. Similarly, this metric measures the distance between x
and y by measuring the distance from x to the ‘origin’, and then the distance from the origin to y.

(vi) Any non-empty set X , with the “discrete” metric

d(x, y) =

{
1 if x 6= y

0 if x = y.

This metric is not particularly refined, but demonstrates that any space is metrizable.



(vii) The space C[0,1] := {f : [0, 1]→ R, a continuous function}, with the metric

d(f, g) = max
t∈[0,1]

|f(t)− g(t)|.

We will discuss this example more next lecture.


