LECTURE 23: SUMMARY

Last time, we discussed the notion of open sets in a general metric space. We proved that neigh-
bourhoods are open, and that arbitrary unions of open sets are open. What about intersections?
After a bit of thought, we saw that the intersection of a bunch of open sets need not be open; for
example,

If we’re slightly less greedy, we can still prove something about intersections:

Theorem 1. The intersection of finitely many open sets is open.

Proof. Suppose Oy, O, ..., Oy are open in the metric space (X, d), and set

A= ﬂ O,.

n<N

Pick p € A; we wish to find a neighbourhood of p which is entirely contained in A.

By definition of A, we know that p € O,, for each n < N; since O, is open, there exists 9,, > 0
such that N, (p) C O, for every n < N. Let

0 :=min{d, : n < N}.

Then § > 0, and Ns(p) C O, for every n. (Why?) It follows that N5(p) C A as well. This
concludes the proof. U

This concludes our discussion of open sets, and we move on to their counterparts, the closed sets.
Before defining what a closed set is, we discussed the notion of limit point. Given a metric space
(X,d) and a subset S C X, we say ¢ € X is a limit point of S iff it is the limit of some sequence
of distinct points of S. In other words, ¢ is a limit point iff there exists a sequence (s,,) of points in
S such that (i) s,, # s, whenever m # n, and (ii) h_)m Sy = /L.

n—oo

Note that a limit point of S might live in .S itself, or might not live in S. For example, consider R
with respect to the usual metric. Then 1 is a limit point of [0, 1] (it is the limit of 1 — %). 1 is also
a limit point of (0,1). Similarly, both 0 and /2 are limit points of Q. What are all the limit points
of Q?

We’ve been talking about limits without precisely defining them in an abstract metric space. For-
tunately, the definition is exactly what you might imagine. Given a sequence (a,,) of points in a
metric space (X, d), we say

lim a, = A <= Ve>0,3N € Ns.t. d(a,, A) < e whenever n > N.

n—0o0
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In practice, it is not always easy to verify whether a point is a limit point of a given set. For
example, above we decided that V/2 is a limit point of Q. But how do we know for sure? Can
you tell me a sequence of rationals which converges to v/2? What’s the millionth term of this
sequence? Fortunately, there is an easier way to check limit points.

Theorem 2. « is a limit point of S iff every neighbourhood of o contains some point of S (other
then « itself).

In other words, « is a limit point of .S iff for each ¢ > 0, there exists x € M(a) M S such that

x # o. For example, in the space R (with respect to the usual metric), v/2 is a limit point of Q
because every open interval contains a rational number.

Proof. As usual, we prove the two directions separately.

(=) Given € > 0. Since « is a limit point of S, there exists a sequence of points (s,,) in S which
converge to . Thus, there exists NV such that s,, € N («a) for all n > N. In particular, the two
distinct points sy 1 and sy.2 belong to AV (). One of these two must be distinct from «, and the
claim follows.

(<=) There exists s; € S such that 0 < d(s1,a) < 1/2. Let g := d(s1,«). There exists
so € N 2(a) NS such that so # a. It follows that d(ss, ) < €/2, and that s, # s1. Set
€2 = d(s9, ). Proceeding in this way, we construct a sequence of distinct points (s,,), which
satisfy
1
d(sp,a) < —
(5,0 < 5

for all n. It follows that (s,,) converges to «, whence « is a limit point of S. U



