
LECTURE 23: SUMMARY

Last time, we discussed the notion of open sets in a general metric space. We proved that neigh-
bourhoods are open, and that arbitrary unions of open sets are open. What about intersections?
After a bit of thought, we saw that the intersection of a bunch of open sets need not be open; for
example, ⋂

n∈N

(
− 1

n
,
1

n

)
= {0}.

If we’re slightly less greedy, we can still prove something about intersections:

Theorem 1. The intersection of finitely many open sets is open.

Proof. Suppose O1,O2, . . . ,ON are open in the metric space (X, d), and set

A :=
⋂
n≤N

On.

Pick p ∈ A; we wish to find a neighbourhood of p which is entirely contained in A.

By definition of A, we know that p ∈ On for each n ≤ N ; since On is open, there exists δn > 0
such that Nδn(p) ⊆ On for every n ≤ N . Let

δ := min{δn : n ≤ N}.
Then δ > 0, and Nδ(p) ⊆ On for every n. (Why?) It follows that Nδ(p) ⊆ A as well. This
concludes the proof. �

This concludes our discussion of open sets, and we move on to their counterparts, the closed sets.
Before defining what a closed set is, we discussed the notion of limit point. Given a metric space
(X, d) and a subset S ⊆ X , we say ` ∈ X is a limit point of S iff it is the limit of some sequence
of distinct points of S. In other words, ` is a limit point iff there exists a sequence (sn) of points in
S such that (i) sm 6= sn whenever m 6= n, and (ii) lim

n→∞
sn = `.

Note that a limit point of S might live in S itself, or might not live in S. For example, consider R
with respect to the usual metric. Then 1 is a limit point of [0, 1] (it is the limit of 1− 1

n
). 1 is also

a limit point of (0, 1). Similarly, both 0 and
√
2 are limit points of Q. What are all the limit points

of Q?

We’ve been talking about limits without precisely defining them in an abstract metric space. For-
tunately, the definition is exactly what you might imagine. Given a sequence (an) of points in a
metric space (X, d), we say

lim
n→∞

an = A ⇐⇒ ∀ε > 0,∃N ∈ N s.t. d(an, A) < ε whenever n > N.
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In practice, it is not always easy to verify whether a point is a limit point of a given set. For
example, above we decided that

√
2 is a limit point of Q. But how do we know for sure? Can

you tell me a sequence of rationals which converges to
√
2? What’s the millionth term of this

sequence? Fortunately, there is an easier way to check limit points.

Theorem 2. α is a limit point of S iff every neighbourhood of α contains some point of S (other
then α itself).

In other words, α is a limit point of S iff for each ε > 0, there exists x ∈ Nε(α) ∩ S such that
x 6= α. For example, in the space R (with respect to the usual metric),

√
2 is a limit point of Q

because every open interval contains a rational number.

Proof. As usual, we prove the two directions separately.

(=⇒) Given ε > 0. Since α is a limit point of S, there exists a sequence of points (sn) in S which
converge to α. Thus, there exists N such that sn ∈ Nε(α) for all n > N . In particular, the two
distinct points sN+1 and sN+2 belong to Nε(α). One of these two must be distinct from α, and the
claim follows.

(⇐=) There exists s1 ∈ S such that 0 < d(s1, α) < 1/2. Let ε1 := d(s1, α). There exists
s2 ∈ Nε1/2(α) ∩ S such that s2 6= α. It follows that d(s2, α) ≤ ε1/2, and that s2 6= s1. Set
ε2 := d(s2, α). Proceeding in this way, we construct a sequence of distinct points (sn), which
satisfy

d(sn, α) <
1

2n

for all n. It follows that (sn) converges to α, whence α is a limit point of S. �


