LECTURE 23: SUMMARY

Last time, we discussed the notion of open sets in a general metric space. We proved that neighbourhoods are open, and that arbitrary unions of open sets are open. What about intersections? After a bit of thought, we saw that the intersection of a bunch of open sets need not be open; for example,

$$\bigcap_{n\in\mathbb{N}}\left(-\frac{1}{n},\frac{1}{n}\right) = \{0\}.$$

If we're slightly less greedy, we can still prove something about intersections:

Theorem 1. The intersection of finitely many open sets is open.

Proof. Suppose $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_N$ are open in the metric space (X, d), and set

$$\mathcal{A}:=igcap_{n\leq N}\mathcal{O}_n.$$

Pick $p \in A$; we wish to find a neighbourhood of p which is entirely contained in A.

By definition of \mathcal{A} , we know that $p \in \mathcal{O}_n$ for each $n \leq N$; since \mathcal{O}_n is open, there exists $\delta_n > 0$ such that $\mathcal{N}_{\delta_n}(p) \subseteq \mathcal{O}_n$ for every $n \leq N$. Let

$$\delta := \min\{\delta_n : n \le N\}.$$

Then $\delta > 0$, and $\mathcal{N}_{\delta}(p) \subseteq \mathcal{O}_n$ for every *n*. (Why?) It follows that $\mathcal{N}_{\delta}(p) \subseteq \mathcal{A}$ as well. This concludes the proof.

This concludes our discussion of open sets, and we move on to their counterparts, the closed sets. Before defining what a closed set is, we discussed the notion of limit point. Given a metric space (X, d) and a subset $S \subseteq X$, we say $\ell \in X$ is a *limit point of* S iff it is the limit of some sequence of distinct points of S. In other words, ℓ is a limit point iff there exists a sequence (s_n) of points in S such that (i) $s_m \neq s_n$ whenever $m \neq n$, and (ii) $\lim_{n \to \infty} s_n = \ell$.

Note that a limit point of S might live in S itself, or might not live in S. For example, consider \mathbb{R} with respect to the usual metric. Then 1 is a limit point of [0, 1] (it is the limit of $1 - \frac{1}{n}$). 1 is also a limit point of (0, 1). Similarly, both 0 and $\sqrt{2}$ are limit points of \mathbb{Q} . What are all the limit points of \mathbb{Q} ?

We've been talking about limits without precisely defining them in an abstract metric space. Fortunately, the definition is exactly what you might imagine. Given a sequence (a_n) of points in a metric space (X, d), we say

$$\lim_{n \to \infty} a_n = A \quad \Longleftrightarrow \quad \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } d(a_n, A) < \epsilon \text{ whenever } n > N.$$

Date: April 2nd, 2013.

In practice, it is not always easy to verify whether a point is a limit point of a given set. For example, above we decided that $\sqrt{2}$ is a limit point of \mathbb{Q} . But how do we know for sure? Can you tell me a sequence of rationals which converges to $\sqrt{2}$? What's the millionth term of this sequence? Fortunately, there is an easier way to check limit points.

Theorem 2. α is a limit point of S iff every neighbourhood of α contains some point of S (other then α itself).

In other words, α is a limit point of S iff for each $\epsilon > 0$, there exists $x \in \mathcal{N}_{\epsilon}(\alpha) \cap S$ such that $x \neq \alpha$. For example, in the space \mathbb{R} (with respect to the usual metric), $\sqrt{2}$ is a limit point of \mathbb{Q} because every open interval contains a rational number.

Proof. As usual, we prove the two directions separately.

 (\Longrightarrow) Given $\epsilon > 0$. Since α is a limit point of S, there exists a sequence of points (s_n) in S which converge to α . Thus, there exists N such that $s_n \in \mathcal{N}_{\epsilon}(\alpha)$ for all n > N. In particular, the two distinct points s_{N+1} and s_{N+2} belong to $\mathcal{N}_{\epsilon}(\alpha)$. One of these two must be distinct from α , and the claim follows.

(\Leftarrow) There exists $s_1 \in S$ such that $0 < d(s_1, \alpha) < 1/2$. Let $\epsilon_1 := d(s_1, \alpha)$. There exists $s_2 \in \mathcal{N}_{\epsilon_1/2}(\alpha) \cap S$ such that $s_2 \neq \alpha$. It follows that $d(s_2, \alpha) \leq \epsilon_1/2$, and that $s_2 \neq s_1$. Set $\epsilon_2 := d(s_2, \alpha)$. Proceeding in this way, we construct a sequence of distinct points (s_n) , which satisfy

$$d(s_n, \alpha) < \frac{1}{2^n}$$

for all n. It follows that (s_n) converges to α , whence α is a limit point of S.