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Midterm Exam

M.1 Given a,b € R, recall the notations

(a,0) :={z €eR:a <z <b} [a,b0] ={zeR:a<z<b}
[a,b) :={x €eR:a<x<b} (a,b] ={x €eR:a<x<b}
(a,00) :=={z eR:z>a} (—00,b) :={z eR:z < b}
[a,00) :={z €R:x>a} (—o0,b] :={z e R:z <b}.

An interval is any set which is either all of R, or else can be written in one of the eight forms above.

(a) Prove that (0,1) ~ (a,b) for any real numbers a < b, by giving an explicit bijection. [You must also prove
that your map is a bijection!]

Prove that for any real number a we have (0,1) ~ (a,00), by giving an ezplicit bijection.
Prove that for any real b, we have (0,1) ~ (—o0,b). [Hint: use part (b))
Prove that (0,1) ~ R by giving an ezplicit bijection.

Prove that if A is any infinite set and « & A, then A ~ AU {a}. [Hint: we proved in lecture that A must
contain a countable subset.)

(f) Prove that (0,1), [0,1), (0,1], and [0, 1] are all equivalent. [Hint: use part (e) and transitivity.]

(g) Is it true that any two non-empty intervals are equivalent? State and prove a (correct!) theorem along
these lines.

M.2 Recall that given a set A, the power set P(A) is the set consisting of all subsets of A. Given two sets A
and B, define B4 to be the set of all functions f : A — B. (The next exercise gives some justification to this
notation.) Prove that P(A) ~ {0,1}4 for any A # (). [Hint: prove this separately for finite and infinite A.]

M.3 Let A, :={1,2,...,n}, and let B be any nonempty set. Define H B := B, and for each n > 2 define
acAy

H B:=DBx H B. (The definition of A x B is given in problem M.8 below.) Prove that

acA, a€A,_1

BAs ~ H B.

a€As

Recall that an binary relation < on a set A is an order on A iff it satisfies three properties:

(i) Antisymmetry: a £ a for alla € A
(ii) Transitivity: if a < b and b < ¢, then a < ¢

(iii) Comparability: for any a,b € A, either a = b, a < b, or b < a.



M.4 In property (iii) above — comparability — the ‘or’ is not exclusive: the property leaves open the possibility
that two (or even all three) of the conditions hold simultaneously for some elements a and b. Prove that in
fact, the ‘or’ must be exclusive. In other words, given an order < on a set A and any two elements a,b € A,
prove that exactly one of the relations a = b, a < b, or b < a holds.

M.5 In this problem, you will show that all three conditions of being an order are necessary; none of them can
be derived from the others.

(a) Give an example of a set A and a binary relation < on A which satisfies properties (i) and (ii), but not
(ii).

(b) Give an example of a set A and a binary relation < on A which satisfies properties (i) and (iii), but not
(ii).

(¢) Give an example of a set A and a binary relation < on A which satisfies properties (ii) and (iii), but not

(i).

M.6 First, recall some notation from our proof of the Cantor-Bernstein theorem. Given sets A and B and
injections f : A — Band g: B < A, set Ay = A, By = B, A,+1 = g(Byn), and B,+1 = f(A,) for all n.
Further, set A} = A,, — Ap+1 and B} = B,, — B,+1. Finally, let

A=) 4; B=|JB; A=) A4, B=()B.
n>0 n>0 n>0 n>0
LetA:Z+% ::{n+%:n€Z} and B = Z, and consider f: A — B and g : B — A defined by f(z) = 2z
and g(z) = 3z — 3.
(a) Give an explicit description of the sets A, and B, (in terms of n).

(b) Give an explicit description of A and B.

(c) Give an explicit description of A and B.

M.7 In class we defined an injection [0,1) < {0,1}" by sending = € [0,1) to a recursively-defined function
fa- [Recall: we defined f;(1) to be 0 if € [0,1/2), and 1 otherwise. In the former case we set a; = 0 and
by = 1/2; in the latter, a; = 1/2 and by = 1. Next, for each n > 2, define f,(n) to be 0 if 2 € [a,_;, L=tttn=1)

2
An—1+bn_1
2

: . n—1+bn—
and 1 otherwise. In the former case, set a, = a,—1 and b,, = ; in the latter, set a,, = % and

by = bp—1.]
(a) Describe (with proof!) the function fa,5(n). [Hint: start by computing fa/5(n) forn =1 to 7.]

2'!1

= 2. [In other words, prove that for any € > 0, there exists a positive integer

N
fa(n)

N
(b) Prove that 1\}H>noo ;

Ny such that for all N > Ny,

< €.

M. 8 Recall that A x B := {(a,b) : a € A,b € B}, where (a,b) denotes an ordered pair (not an interval). Prove
that the Generalized Continuum Hypothesis implies that A x A ~ A for any infinite set A. [In fact, this can
be proved without the GCH! In your proof, feel free to use the axiom of choice and the well-ordering theorem.|



