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Recall that G denotes the set of all plane isometries. We also decided that writing f ◦ g to denote
function composition is tedious; henceforth, this will be denoted by fg. (This notation isn’t as
ambiguous as it may seem at first glance – how else could it be interpreted?)

Recall that last lecture, we proved most of the following.

Lemma 1. Given φ ∈ G, there exist h ∈ C, α ∈ [0, 2π), and j ∈ {0, 1} such that

φ = ThRαρ
j.

Moreover, h, α, and j are uniquely determined by φ.

Here are the main steps. Most of these were completed the previous lecture, so I suppress details.
However, a few things changed in Steps 3 and 4.

Proof.
STEP 1: Renormalize φ so that it fixes the origin.

More precisely, define f := T−φ(0)φ. It is easy to verify that f(0) = 0 and that
f ∈ G. It follows that |f(X)| = |X| for all X ∈ R2. //

STEP 2: Dot products are preserved: for all X, Y ∈ R2, we have f(X) · f(Y ) = X · Y .
Since f ∈ G, |f(X)− f(Y )|2 = |X − Y |2. Expanding and simplifying both sides
yields the claim. //

STEP 3: f is linear: f(αX + βY ) = αf(X) + βf(Y ) for all α, β ∈ R and X, Y ∈ R2.
We do this in two steps. First, consider |f(αX) − αf(X)|2. Writing this in
terms of the dot product, expanding, applying Step 2, and simplifying shows that
f(αX) = αf(X). A similar argument shows that f(X + Y ) = f(X) + f(Y ), and
the claim immediately follows. //

STEP 4: f = Rαρ
j for some α ∈ [0, 2π) and j ∈ {0, 1}.

First, note that by linearity,

f(a+ bi) = af(1) + bf(i) (1)

for any a, b ∈ R. Next, observe that |f(1)| = |f(i)| = 1, whence we can write
f(1) = eiα and f(i) = eiβ for some α, β ∈ [0, 2π). Moreover, Step 2 implies that
f(1) ⊥ f(i), so |β − α| = π/2 + 2πk for some k ∈ Z. Thus β = α± π/2 + 2πk,
and it follows that

f(i) = ieiα or f(i) = −ieiα.
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In the former case, (1) implies that f = Rα; in the latter case, (1) implies that
f = Rαρ. The claim is proved. //

STEP 5: Existence and Uniqueness
Putting together Steps 1 and 4, we see that

φ = Tφ(0)f = Tφ(0)Rαρ
j.

We have thus proved that it’s possible to express any isometry φ in the form φhRαρ
j .

We now prove uniqueness. Suppose

ThRαρ
j = T`Rβρ

k,

where h, ` ∈ C, α, β ∈ [0, 2π), and j, k ∈ {0, 1}. We wish to show that h = `,
α = β, and j = k.

Jay offered the following argument. First, observe that the two isometries are
equal iff

ThRαρ
j(z) = T`Rβρ

k(z)

for all z ∈ C. Taking z = 0 implies that h = `. It follows that

Rαρ
j(z) = Rβρ

k(z)

for all z ∈ C. Taking z = 1 implies that eiα = eiβ , whence α = β + 2πk for some
k ∈ Z. Since α, β ∈ [0, 2π), we deduce that α = β. Thus, we conclude that

ρj = ρk.

Without loss of generality, say j ≤ k, so that k − j = 0 or 1. Then

ρk−j(z) = z

for all z ∈ C. Taking z = i yields k − j = 0, and hence, that j = k. Uniqueness is
proved! �

In fact, during the course of the proof we figured out more precisely what h, α, and j are in the
statement of the Lemma. It is a good exercise to describe them precisely in terms of φ.

Let’s take stock of what we’ve proved so far about the structure of G thus far.
(1) Every φ ∈ G can be written in the form ThRα or ThRαρ.
(2) ThRα is a rotation whenever α 6= 0.

Combining these, we see that any isometry φ is either a translation (if α = 0 and j = 0), a rotation
(if α 6= 0 and j = 0), or has the form φ = ThRαρ. We will show that every isometry of the last
form must be a glide reflection, thus proving the following fundamental result:

Theorem 2 (Classification of Plane Isometries). Every plane isometry is either a rotation, a trans-
lation, or a glide reflection.

As mentioned above, it suffices to prove that ThRαρ is a glide reflection. Why is this true? It’s
entirely unclear at first glance (and I challenge the reader to see this in a picture). As with the case
of the rotation, we build intuition by going in reverse: we’ll prove that any glide reflection can be
written in this form.



Let’s start with some notation, to make our lives easier. Given a line L and a real number a, let
γL,a denote the glide reflection along L with displacement1 a. By the Lemma, we know we can
express γL,a as a composition of T ’s, R’s, and (possibly) ρ. How? Following an idea of Steph and
Kishan from a couple lectures ago, we first rotate the plane until L is horizontal, then translate the
plane up or down until L becomes the x-axis. In other words, we can find α ∈ [0, 2π) and b ∈ R
such that

TbiRα(L) = x-axis.
Next, we reflect across the x-axis, and glide by a; finally, we undo our original vertical shift /
rotation to bring the x-axis back to where L was originally. In other words, we have

γL,a = R−αT−biTaρTbiRα.

This looks complicated, but using the rules we’ve developed for switching the orders of primitive
isometries, we can rewrite this fairly easily in the form

γL,a = ThRθρ.

This shows that every glide reflection can be written in the above form. What we want, however,
is the converse: that every isometry of the above form is a glide reflection. To do this, we need to
do the above calculation carefully and figure out precise formulas for h and θ in terms of a, b, and
α. We will do this next lecture.
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1Note that I use displacement rather than distance because a could be positive or negative, depending on which
direction the glide is. By convention, up will be considered positive and down negative; in the case of a horizontal
line, left will be negative and right will be positive.


