GROUPS AND SYMMETRY: LECTURE 7

LEO GOLDMAKHER

Recall that \mathcal{G} denotes the set of all plane isometries. We also decided that writing $f \circ g$ to denote function composition is tedious; henceforth, this will be denoted by fg. (This notation isn't as ambiguous as it may seem at first glance – how else could it be interpreted?)

Recall that last lecture, we proved most of the following.

Lemma 1. Given $\phi \in \mathcal{G}$, there exist $h \in \mathbb{C}$, $\alpha \in [0, 2\pi)$, and $j \in \{0, 1\}$ such that

$$\phi = T_h R_{\alpha} \rho^j$$
.

Moreover, h, α , and j are uniquely determined by ϕ .

Here are the main steps. Most of these were completed the previous lecture, so I suppress details. However, a few things changed in Steps 3 and 4.

Proof.

STEP 1: Renormalize ϕ so that it fixes the origin.

More precisely, define $f:=T_{-\phi(0)}\phi$. It is easy to verify that f(0)=0 and that $f\in\mathcal{G}$. It follows that |f(X)|=|X| for all $X\in\mathbb{R}^2$. //

STEP 2: Dot products are preserved: for all $X,Y\in\mathbb{R}^2$, we have $f(X)\cdot f(Y)=X\cdot Y$. Since $f\in\mathcal{G}, |f(X)-f(Y)|^2=|X-Y|^2$. Expanding and simplifying both sides yields the claim. //

STEP 3: f is linear: $f(\alpha X + \beta Y) = \alpha f(X) + \beta f(Y)$ for all $\alpha, \beta \in \mathbb{R}$ and $X, Y \in \mathbb{R}^2$. We do this in two steps. First, consider $|f(\alpha X) - \alpha f(X)|^2$. Writing this in terms of the dot product, expanding, applying Step 2, and simplifying shows that $f(\alpha X) = \alpha f(X)$. A similar argument shows that f(X + Y) = f(X) + f(Y), and

Step 4: $f = R_{\alpha} \rho^{j}$ for some $\alpha \in [0, 2\pi)$ and $j \in \{0, 1\}$.

the claim immediately follows. //

First, note that by linearity,

$$f(a+bi) = af(1) + bf(i) \tag{1}$$

for any $a,b\in\mathbb{R}$. Next, observe that |f(1)|=|f(i)|=1, whence we can write $f(1)=e^{i\alpha}$ and $f(i)=e^{i\beta}$ for some $\alpha,\beta\in[0,2\pi)$. Moreover, Step 2 implies that $f(1)\perp f(i)$, so $|\beta-\alpha|=\pi/2+2\pi k$ for some $k\in\mathbb{Z}$. Thus $\beta=\alpha\pm\pi/2+2\pi k$, and it follows that

$$f(i) = ie^{i\alpha}$$
 or $f(i) = -ie^{i\alpha}$.

Date: September 27, 2013.

In the former case, (1) implies that $f=R_{\alpha}$; in the latter case, (1) implies that $f=R_{\alpha}\rho$. The claim is proved. //

STEP 5: Existence and Uniqueness

Putting together Steps 1 and 4, we see that

$$\phi = T_{\phi(0)}f = T_{\phi(0)}R_{\alpha}\rho^{j}.$$

We have thus proved that it's *possible* to express any isometry ϕ in the form $\phi_h R_\alpha \rho^j$. We now prove uniqueness. Suppose

$$T_h R_\alpha \rho^j = T_\ell R_\beta \rho^k,$$

where $h, \ell \in \mathbb{C}$, $\alpha, \beta \in [0, 2\pi)$, and $j, k \in \{0, 1\}$. We wish to show that $h = \ell$, $\alpha = \beta$, and j = k.

Jay offered the following argument. First, observe that the two isometries are equal iff

$$T_h R_\alpha \rho^j(z) = T_\ell R_\beta \rho^k(z)$$

for all $z \in \mathbb{C}$. Taking z = 0 implies that $h = \ell$. It follows that

$$R_{\alpha}\rho^{j}(z) = R_{\beta}\rho^{k}(z)$$

for all $z \in \mathbb{C}$. Taking z = 1 implies that $e^{i\alpha} = e^{i\beta}$, whence $\alpha = \beta + 2\pi k$ for some $k \in \mathbb{Z}$. Since $\alpha, \beta \in [0, 2\pi)$, we deduce that $\alpha = \beta$. Thus, we conclude that

$$\rho^j = \rho^k.$$

Without loss of generality, say $j \le k$, so that k - j = 0 or 1. Then

$$\rho^{k-j}(z) = z$$

for all $z \in \mathbb{C}$. Taking z = i yields k - j = 0, and hence, that j = k. Uniqueness is proved!

In fact, during the course of the proof we figured out more precisely what h, α , and j are in the statement of the Lemma. It is a good exercise to describe them precisely in terms of ϕ .

Let's take stock of what we've proved so far about the structure of \mathcal{G} thus far.

- (1) Every $\phi \in \mathcal{G}$ can be written in the form $T_h R_{\alpha}$ or $T_h R_{\alpha} \rho$.
- (2) $T_h R_{\alpha}$ is a rotation whenever $\alpha \neq 0$.

Combining these, we see that any isometry ϕ is either a translation (if $\alpha = 0$ and j = 0), a rotation (if $\alpha \neq 0$ and j = 0), or has the form $\phi = T_h R_{\alpha} \rho$. We will show that every isometry of the last form must be a glide reflection, thus proving the following fundamental result:

Theorem 2 (Classification of Plane Isometries). Every plane isometry is either a rotation, a translation, or a glide reflection.

As mentioned above, it suffices to prove that $T_h R_{\alpha} \rho$ is a glide reflection. Why is this true? It's entirely unclear at first glance (and I challenge the reader to see this in a picture). As with the case of the rotation, we build intuition by going in reverse: we'll prove that any glide reflection can be written in this form.

Let's start with some notation, to make our lives easier. Given a line \mathcal{L} and a real number a, let $\gamma_{\mathcal{L},a}$ denote the glide reflection along \mathcal{L} with displacement a. By the Lemma, we know we can express $\gamma_{\mathcal{L},a}$ as a composition of T's, R's, and (possibly) ρ . How? Following an idea of Steph and Kishan from a couple lectures ago, we first rotate the plane until \mathcal{L} is horizontal, then translate the plane up or down until \mathcal{L} becomes the x-axis. In other words, we can find $\alpha \in [0, 2\pi)$ and $b \in \mathbb{R}$ such that

$$T_{bi}R_{\alpha}(\mathcal{L}) = x$$
-axis.

Next, we reflect across the x-axis, and glide by a; finally, we undo our original vertical shift / rotation to bring the x-axis back to where \mathcal{L} was originally. In other words, we have

$$\gamma_{\mathcal{L},a} = R_{-\alpha} T_{-bi} T_a \rho T_{bi} R_{\alpha}.$$

This looks complicated, but using the rules we've developed for switching the orders of primitive isometries, we can rewrite this fairly easily in the form

$$\gamma_{\mathcal{L},a} = T_h R_{\theta} \rho.$$

This shows that every glide reflection can be written in the above form. What we want, however, is the converse: that every isometry of the above form is a glide reflection. To do this, we need to do the above calculation carefully and figure out precise formulas for h and θ in terms of a, b, and α . We will do this next lecture.

WWW.MATH.TORONTO.EDU/LGOLDMAK/C01F13/ *E-mail address*: lgoldmak@math.toronto.edu

¹Note that I use *displacement* rather than *distance* because a could be positive or negative, depending on which direction the glide is. By convention, up will be considered positive and down negative; in the case of a horizontal line, left will be negative and right will be positive.