GROUPS AND SYMMETRY: LECTURE 10

LEO GOLDMAKHER

Last time, we mostly proved a classification of the symmetries of the square. More precisely, we tried to prove the following (see the previous lecture notes for more details on notation):

Proposition 1. There are precisely eight symmetries of the square $\{\pm 1 \pm i\}$, given by

$$\mathcal{G}_{\{\pm 1 \pm i\}} = \left\{ R_{\pi/2}^k \rho^j : k, j \in \mathbb{Z} \right\}.$$

We realized that it suffices to prove

Proposition 2. If $\gamma \in \mathcal{G}_{\{\pm 1 \pm i\}}$, then $\gamma(0) = 0$.

(Try to deduce Proposition 1 from Proposition 2 without looking at the previous lecture notes!) Here was our strategy for proving Proposition 2. Let \mathcal{L}_+ denote the line segment connecting -1-i to 1+i, and let \mathcal{L}_- denote the line segment connecting -1+i to 1-i. (In other words, \mathcal{L}_\pm are the diagonals of the square.) Since $0 \in \mathcal{L}_+ \cap \mathcal{L}_-$, we see that

$$\gamma(0) \in \gamma(\mathcal{L}_+ \cap \mathcal{L}_-) = \gamma(\mathcal{L}_+) \cap \gamma(\mathcal{L}_-).$$

An easy argument will show that $\gamma(\mathcal{L}_+)$ is one of \mathcal{L}_+ or \mathcal{L}_- , and that $\gamma(\mathcal{L}_-)$ is the other. Therefore,

$$\gamma(0) \in \gamma(\mathcal{L}_+) \cap \gamma(\mathcal{L}_-) = \mathcal{L}_+ \cap \mathcal{L}_- = \{0\}.$$

This immediately implies that $\gamma(0) = 0$.

In the above outline, some of the steps are conjectures which need to be proved. In particular, we need to prove the following:

I.
$$\gamma(\mathcal{L}_{+} \cap \mathcal{L}_{-}) = \gamma(\mathcal{L}_{+}) \cap \gamma(\mathcal{L}_{-})$$

II. $\gamma(\mathcal{L}_{+}) \cap \gamma(\mathcal{L}_{-}) = \mathcal{L}_{+} \cap \mathcal{L}_{-}$
III. $\mathcal{L}_{+} \cap \mathcal{L}_{-} = \{0\}$

Claim I follows immediately from a more general statement:

Lemma 3. For any sets $A, B \subseteq \mathbb{R}^2$ and any $\phi \in \mathcal{G}$, we have $\phi(A \cap B) = \phi(A) \cap \phi(B)$.

Proof. As usual, we prove this in two steps. We first prove that $\phi(A \cap B) \subseteq \phi(A) \cap \phi(B)$:

$$y \in \phi(A \cap B) \Longrightarrow \exists x \in A \cap B \text{ such that } y = \phi(x)$$
 $\Longrightarrow \exists x \text{ such that } x \in A, x \in B, \text{ and } y = \phi(x)$
 $\Longrightarrow y \in \phi(A) \text{ and } y \in \phi(B)$
 $\Longrightarrow y \in \phi(A) \cap \phi(B).$

Next, we prove the reverse inclusion. As we discussed in class, we cannot simply reverse the directions of the arrows (why not?). Here's the proof we came up with:

$$y \in \phi(A) \cap \phi(B) \Longrightarrow y \in \phi(A) \text{ and } y \in \phi(B)$$

 $\Longrightarrow \exists x_1 \in A, x_2 \in B, \text{ such that } \phi(x_1) = y = \phi(x_2).$

Date: October 7, 2013.

We know every isometry is bijective. In particular, ϕ is injective, so $x_1 = x_2$. We deduce that $x_1 \in A \cap B$, whence

$$y = \phi(x_1) \in \phi(A \cap B).$$

This proves claim I from above. We will deduce claim II from the following general result (see the previous lecture notes for a proof):

Lemma 4. Let \overline{XY} denote the line segment between $X,Y\in\mathbb{C}$. Then for any $\phi\in\mathcal{G}$ and $X,Y\in\mathbb{C}$,

$$\phi(\overline{XY}) = \overline{\phi(X)\phi(Y)}.$$

We can now prove claim II. Given $\gamma \in \mathcal{G}_{\{\pm 1 \pm i\}}$, where does it send \mathcal{L}_+ ? Lemma 4 shows that it suffices to see where γ sends the endpoints. Both endpoints of \mathcal{L}_+ get sent to $\{\pm 1 \pm i\}$. Because γ is injective, they get sent to two different points. Moreover, the distance between the two endpoints of \mathcal{L}_+ is $2\sqrt{2}$, so they must get sent either to the endpoints of \mathcal{L}_+ or to the endpoints of \mathcal{L}_- ; in other words, $\gamma(-1-i) = -\gamma(1+i)$. Lemma 4 immediately implies that $\gamma(\mathcal{L}_+) = \mathcal{L}_+$ or \mathcal{L}_- .

The same argument shows that $\gamma(-1+i) = -\gamma(1-i)$, so that \mathcal{L}_- gets mapped to either \mathcal{L}_+ or \mathcal{L}_- . Moreover, by injectivity, $\gamma(\mathcal{L}_+) \neq \gamma(\mathcal{L}_-)$. It follows that one of $\gamma(\mathcal{L}_\pm)$ is \mathcal{L}_+ , and the other is \mathcal{L}_- . Thus,

$$\gamma(\mathcal{L}_+) \cap \gamma(\mathcal{L}_-) = \mathcal{L}_+ \cap \mathcal{L}_-$$

as claimed in II.

Finally, we prove claim III, i.e. that $\mathcal{L}_+ \cap \mathcal{L}_- = \{0\}$. Using our parametrization of lines (as in the proof of Lemma 4 from last lecture) we see that

$$\mathcal{L}_{+} = \{(1-t)(1+i) + t(-1-i) : 0 \le t \le 1\}$$
$$= \{(1-2t)(1+i) : 0 \le t \le 1\}.$$

Similarly,

$$\mathcal{L}_{-} = \{(1 - 2t)(1 - i) : 0 \le t \le 1\}.$$

Thus, if $z \in \mathcal{L}_+ \cap \mathcal{L}_-$, then there exist $s,t \in [0,1]$ such that

$$(1-2t)(1+i) = z = (1-2s)(1-i).$$

This implies

$$1 - 2s = (1 - 2t)\frac{1 + i}{1 - i} = (1 - 2t)i.$$

The left hand side is real and the right hand side is imaginary, which is only possible if both are zero. This implies $s=t=\frac{1}{2}$, whence z=0. This concludes the proof of claim III, and thus, of Proposition 2.

WWW.MATH.TORONTO.EDU/LGOLDMAK/C01F13/ *E-mail address*: lgoldmak@math.toronto.edu