GROUPS AND SYMMETRY: LECTURE 10

LEO GOLDMAKHER

Last time, we mostly proved a classification of the symmetries of the square. More precisely, we
tried to prove the following (see the previous lecture notes for more details on notation):

Proposition 1. There are precisely eight symmetries of the square {+1 + i}, given by
Git1+iy = {Ri/zﬂj k€ Z} :

We realized that it suffices to prove

Proposition 2. If v € Gy1144), then v(0) = 0.

(Try to deduce Proposition 1 from Proposition 2 without looking at the previous lecture notes!)

Here was our strategy for proving Proposition 2. Let £, denote the line segment connecting
—1—1ito 1+, andlet £_ denote the line segment connecting —1 + ¢ to 1 — 4. (In other words,
L are the diagonals of the square.) Since 0 € £, N L_, we see that

Y(0) € YLy N L) =v(Ly) Ny(Lo).
An easy argument will show that (L) is one of £ or £_, and that (£ _) is the other. Therefore,
Y(0) € v(Ly) Ny(Lo) = Ly N L = {0}
This immediately implies that (0) = 0.

In the above outline, some of the steps are conjectures which need to be proved. In particular,
we need to prove the following:
Ly(LenLo)=~(Ls)Ny(L)
IL v(Ly)Ny(Lo)=LiN L
. £.NnL_ ={0}
Claim I follows immediately from a more general statement:
Lemma 3. For any sets A, B C R? and any ¢ € G, we have $(A N B) = ¢(A) N ¢(B).
Proof. As usual, we prove this in two steps. We first prove that o(A N B) C ¢(A) N ¢(B):
y € p(ANB) = dr € AN B such that y = ¢(x)
= Jdrsuchthatz € A,z € B, and y = ¢(z)
=y € o(A)andy € ¢(B)
=y € ¢(A) N P(B).

Next, we prove the reverse inclusion. As we discussed in class, we cannot simply reverse the
directions of the arrows (why not?). Here’s the proof we came up with:

y € (A)No(B) =y € ¢(A) and y € ¢(B)
—> Jdz; € A, 29 € B, such that ¢(x;) = y = ¢(x2).
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We know every isometry is bijective. In particular, ¢ is injective, so r1 = zo. We deduce that
r1 € AN B, whence
y=o(x1) € 9(AN B). O

This proves claim I from above. We will deduce claim II from the following general result (see
the previous lecture notes for a proof):

Lemmad. Let XY denote the line segment between X,Y € C. Thenforany ¢ € Gand X,Y € C,
P(XY) = o(X)o(Y).

We can now prove claim II. Given v € G444}, where does it send £,? Lemma 4 shows that it
suffices to see where « sends the endpoints. Both endpoints of £, get sent to {1+ }. Because
is injective, they get sent to two different points. Moreover, the distance between the two endpoints
of £, is 2v/2, so they must get sent either to the endpoints of £ or to the endpoints of £_; in
other words, y(—1 — 7) = —v(1 + 7). Lemma 4 immediately implies that v(£,) = L, or £ _.

The same argument shows that y(—1 + i) = —(1 — 7), so that £_ gets mapped to either £, or
L _. Moreover, by injectivity, v(£.) # v(£-). It follows that one of v(L4.) is £, and the other is
L_. Thus,

AL ML) = Lo Lo
as claimed in II.

Finally, we prove claim I, i.e. that £, N £_ = {0}. Using our parametrization of lines (as in
the proof of Lemma 4 from last lecture) we see that

Li={1-t)1+4)+t(-1—-14):0<t<1}
={(1-2t)(1+4):0<t<1}.
Similarly,
Lo={1-20)(1—i):0<¢t<1}.
Thus, if z € £, N L_, then there exist s, ¢ € [0, 1] such that
(1—2t)(1+i)=2z=(1—2s)(1—1).
This implies

.
1—2&:u—2w1+?:(y—%ﬁ
1

The left hand side is real and the right hand side is imaginary, which is only possible if both are
zero. This implies s =t = %, whence z = 0. This concludes the proof of claim III, and thus, of
Proposition 2. 0
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