
GROUPS AND SYMMETRY: LECTURE 10

LEO GOLDMAKHER

Last time, we mostly proved a classification of the symmetries of the square. More precisely, we
tried to prove the following (see the previous lecture notes for more details on notation):

Proposition 1. There are precisely eight symmetries of the square {±1± i}, given by

G{±1±i} =
{
Rk
π/2ρ

j : k, j ∈ Z
}
.

We realized that it suffices to prove

Proposition 2. If γ ∈ G{±1±i}, then γ(0) = 0.

(Try to deduce Proposition 1 from Proposition 2 without looking at the previous lecture notes!)
Here was our strategy for proving Proposition 2. Let L+ denote the line segment connecting
−1 − i to 1 + i, and let L− denote the line segment connecting −1 + i to 1 − i. (In other words,
L± are the diagonals of the square.) Since 0 ∈ L+ ∩ L−, we see that

γ(0) ∈ γ(L+ ∩ L−) = γ(L+) ∩ γ(L−).
An easy argument will show that γ(L+) is one of L+ or L−, and that γ(L−) is the other. Therefore,

γ(0) ∈ γ(L+) ∩ γ(L−) = L+ ∩ L− = {0}.
This immediately implies that γ(0) = 0.

In the above outline, some of the steps are conjectures which need to be proved. In particular,
we need to prove the following:

I. γ(L+ ∩ L−) = γ(L+) ∩ γ(L−)
II. γ(L+) ∩ γ(L−) = L+ ∩ L−

III. L+ ∩ L− = {0}
Claim I follows immediately from a more general statement:

Lemma 3. For any sets A,B ⊆ R2 and any φ ∈ G, we have φ(A ∩B) = φ(A) ∩ φ(B).

Proof. As usual, we prove this in two steps. We first prove that φ(A ∩B) ⊆ φ(A) ∩ φ(B):
y ∈ φ(A ∩B) =⇒ ∃x ∈ A ∩B such that y = φ(x)

=⇒ ∃x such that x ∈ A, x ∈ B, and y = φ(x)

=⇒ y ∈ φ(A) and y ∈ φ(B)

=⇒ y ∈ φ(A) ∩ φ(B).

Next, we prove the reverse inclusion. As we discussed in class, we cannot simply reverse the
directions of the arrows (why not?). Here’s the proof we came up with:

y ∈ φ(A) ∩ φ(B) =⇒ y ∈ φ(A) and y ∈ φ(B)

=⇒ ∃x1 ∈ A, x2 ∈ B, such that φ(x1) = y = φ(x2).
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We know every isometry is bijective. In particular, φ is injective, so x1 = x2. We deduce that
x1 ∈ A ∩B, whence

y = φ(x1) ∈ φ(A ∩B). �

This proves claim I from above. We will deduce claim II from the following general result (see
the previous lecture notes for a proof):

Lemma 4. LetXY denote the line segment betweenX, Y ∈ C. Then for any φ ∈ G andX, Y ∈ C,

φ(XY ) = φ(X)φ(Y ).

We can now prove claim II. Given γ ∈ G{±1±i}, where does it send L+? Lemma 4 shows that it
suffices to see where γ sends the endpoints. Both endpoints of L+ get sent to {±1± i}. Because γ
is injective, they get sent to two different points. Moreover, the distance between the two endpoints
of L+ is 2

√
2, so they must get sent either to the endpoints of L+ or to the endpoints of L−; in

other words, γ(−1− i) = −γ(1 + i). Lemma 4 immediately implies that γ(L+) = L+ or L−.
The same argument shows that γ(−1 + i) = −γ(1− i), so that L− gets mapped to either L+ or
L−. Moreover, by injectivity, γ(L+) 6= γ(L−). It follows that one of γ(L±) is L+, and the other is
L−. Thus,

γ(L+) ∩ γ(L−) = L+ ∩ L−
as claimed in II.

Finally, we prove claim III, i.e. that L+ ∩ L− = {0}. Using our parametrization of lines (as in
the proof of Lemma 4 from last lecture) we see that

L+ = {(1− t)(1 + i) + t(−1− i) : 0 ≤ t ≤ 1}
= {(1− 2t)(1 + i) : 0 ≤ t ≤ 1}.

Similarly,
L− = {(1− 2t)(1− i) : 0 ≤ t ≤ 1}.

Thus, if z ∈ L+ ∩ L−, then there exist s, t ∈ [0, 1] such that

(1− 2t)(1 + i) = z = (1− 2s)(1− i).
This implies

1− 2s = (1− 2t)
1 + i

1− i
= (1− 2t)i.

The left hand side is real and the right hand side is imaginary, which is only possible if both are
zero. This implies s = t = 1

2
, whence z = 0. This concludes the proof of claim III, and thus, of

Proposition 2. �
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