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Recall that congruence is a natural example of ‘sameness’ among shapes; two congruent triangles
are not the same, but we they have the same shape, so we consider them the same. Formally, we
defined the binary relation ∼= by A ∼= B iff ∃φ ∈ G such that φ(A) = B. Next we verified that ∼=
is an equivalence relation, i.e. it satisfies three properties:

(I) Reflexive: for all A ⊆ R2, we have A ∼= A.
(II) Symmetric: if A ∼= B, then B ∼= A.

(III) Transitive: if A ∼= B and B ∼= C, then A ∼= C.
Further, recall that each of these holds because the set G of plane isometries satisfies some nice
properties. More precisely, (I) holds because 1 ∈ G; (II) holds because φ−1 ∈ G for every φ ∈ G;
(III) holds because G is closed under composition (i.e. if φ, ψ ∈ G, then φψ ∈ G).

This is an example of a geometric equivalence, a geometric way of measuring similarity between
different subsets of R2 (namely, by comparing their shape). Is there a natural geometric equivalence
on G itself? In other words, is there a way of measuring similarity between different types of plane
isometries? We quickly came up with one: types of motions. In particular, we already implicitly
distinguish types of motions, by calling them rotations or translations or reflections. To formalize
this, we need to come up with an equivalence relation ≈ on G such that any two rotations are
equivalent, any two translations are equivalent, any two reflections are equivalent, etc, but which
distinguishes these types from one another (i.e. translations and rotations shouldn’t be equivalent).
There were many great suggestions – several of these are on the homework – but we saw that
finding such an equivalence relation isn’t so easy. So, following Pólya’s dictum (“If you can’t
solve a problem, then there is an easier problem you can solve: find it.”), we attacked a simpler
problem: what if we just want to make all rotations by the same angle equivalent? We know from
before that a rotation around C by angle α can be written TCRαT

−1
C . A similar result we’d found

was that any reflection can be written φρφ−1 for some φ ∈ G. Inspired by this, we defined the
following binary comparison on G:

f ∼ g ⇐⇒ ∃φ ∈ G such that φfφ−1 = g.

As we saw above, any reflection is equivalent to ρ under this, and any rotation by α is equivalent
to Rα. Moreover, we proved this is an equivalence relation:

(I) Reflexive: for all f ∈ G, we have f ∼ f .
(II) Symmetric: if f ∼ g, then g ∼ f .

(III) Transitive: if f ∼ g and g ∼ h, then f ∼ h.
You should make sure you can prove all of these, without referring to your lecture notes!

Analyzing our proofs of these, we realized that they implicitly depend on some properties of G.
(I) depends on the existence of the identity in G. (II) follows from the existence of inverses in G,
i.e. φ−1 ∈ G for any φ ∈ G; we also need (φ−1)−1 = φ for all φ ∈ G. Finally, (III) is true because
(φψ)−1 = ψ−1φ−1. More crucially, and much more subtly, (III) holds because composition is
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associative: for any three isometries φ, ψ, γ ∈ G, the triple composition φψγ is unambiguous.
What does this mean? Well, in principle composition is a way of combining two things, not three
things, so we cannot compose three different isometries simultaneously: we can compose two of
them, then compose the result with the remaining one. Thus when we write φψγ it could mean
(φψ)γ or φ(ψγ); associativity means that these are the same.

It might seem to you that associativity is esoteric. Certainly, it’s true that most binary operations
you’ve seen are associative. For example, addition: 3 + 4 + 7 is entirely unambiguous. Multi-
plication is also associative: 3 × 4 × 7 is unambiguous. But division is stranger. For example,
what is 4 ÷ 2 ÷ 2? Some of you thought the answer should be 1, others thought 4. The point is,
it’s not obvious – without explicitly writing parentheses – how to interpret 4 ÷ 2 ÷ 2. So, ÷ isn’t
associative.

From our two equivalence relations ∼= and ∼, we have the following list of important properties
satisfied by G:

(1) G has an identity (needed for reflexive property for ∼=);
(2) every element of G has an inverse in G (needed for symmetric property of ∼=);
(3) G is closed under composition (needed for transitive property of ∼=);
(4) for all φ ∈ G, we have (φ−1)−1 = φ (needed for symmetric property of ∼);
(5) G is associative (needed for transitive property of ∼); and
(6) for all φ, ψ ∈ G, we have (φψ)−1 = ψ−1φ−1 (needed for transitive property of ∼).

It is an exercise to show that properties (4) and (6) can both be derived from the definition of an
inverse. By contrast, the remaining four properties – closure, associativity, existence of identity,
and existence of inverses – are independent of one another. This inspires the following definition.

Definition. A group is a set Γ with a binary operation @ (i.e. @ : Γ× Γ→ Γ) such that
(1) Γ is associative under @;
(2) Γ has an identity under @, that is there exists an element e ∈ Γ such that e@x = x = x@e

for all x ∈ Γ; and
(3) every element of Γ has an inverse in Γ, i.e. for every x ∈ Γ there exists an element y ∈ Γ

such that x@y = e. (Usually, y is denoted x−1.)

Thus, a group is a set of objects (numbers, functions, etc.) with some nice way of combining
two of these objects to get a third. Note that the four properties enjoyed by the set of isometries G
are exactly what we use in this definition. (Where’s closure?) Most of the rest of the semester will
be spent discussing groups, many examples of which you’ve already seen.
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