GROUPS AND SYMMETRY: LECTURE 12

LEO GOLDMAKHER

Last time, we discussed the formal definition of a group. We'll review that later in the lecture. For now, here's a rough heuristic: a *group* is a set Γ , along with a nice binary operation (i.e. a way of combining any two elements of Γ to form a third), which we called @. What does it mean for a binary operation to be nice? Roughly, it means that you can use just that operation @ to get from any one element of Γ to any other element. We did a bunch of examples, some generated by me, others by you.

- (1) $(\mathbb{Z}, +)$ is a group. For example, to get from 3 to 5, just add 2. More generally, to get from $a \in \mathbb{Z}$ to $b \in \mathbb{Z}$, just add the integer b a.
- (2) (\mathbb{Z}, \times) is not a group; there's no way to get from 3 to 5 using multiplication by an integer.
- (3) (\mathbb{Q}, \times) is still not a group; now you can get from 3 to 5 (multiply by $\frac{5}{3}$), but you can't get from 0 to 1.
- (4) $(\mathbb{Q}^{\times}, \times)$ is a group, where $\mathbb{Q}^{\times} := \mathbb{Q} \{0\}$. To get from $a \in \mathbb{Q}$ to $b \in \mathbb{Q}$, just multiply by $\frac{b}{a}$, which is in \mathbb{Q} since $a \neq 0$.
- (5) $(\{1\}, \times)$ is a group; you can get from any element to any other by multiplying by 1.
- (6) $\left(\left\{2,3,\frac{2}{3},\frac{3}{2}\right\},\times\right)$ is not a group; \times isn't a binary operation on the set, since for example $4=2\times2$ doesn't live in the set.
- (7) $(\{\pm 1\}, \times)$ is a group; you can get from any element to any other by multiplying by 1 or -1.
- (8) $(\{f: \mathbb{R} \to \mathbb{R} \text{ is a function}\}, +)$ is a group. What does it mean to add two functions? Exactly what you think: the function f+g defined by (f+g)(x):=f(x)+g(x). This is also a function from $\mathbb{R} \to \mathbb{R}$, so addition is really a binary operation on this set. Moreover, to get from any function $f: \mathbb{R} \to \mathbb{R}$ to any other function $g: \mathbb{R} \to \mathbb{R}$, simply add the function g-f, defined the way you think: (g-f)(x):=g(x)-f(x).
- (9) $(2\mathbb{Z}, \times)$ is not a group, where $2\mathbb{Z}$ is the set of all even numbers; there's no way to get from 0 to 2.
- (10) $(2\mathbb{Z}, +)$ is a group: to get from the even number a to the even number b, add the even number b-a.

Date: October 21, 2013.

(11) (\mathcal{G}, \circ) , where \mathcal{G} is the set of plane isometries, is a group. Here it was a bit harder to see how to get from one isometry to another, but Eric came up with a way: given $\phi, \psi \in \mathcal{G}$ we have

$$\psi = \phi \circ (\phi^{-1} \circ \psi)$$
$$= (\psi \circ \phi^{-1}) \circ \phi.$$

Either way, this gives a way of getting from ϕ to ψ .

Next, we recalled the formal definition of a group:

Definition. A group is a set Γ with a binary operation @ (i.e. $@: \Gamma \times \Gamma \to \Gamma$) obeying the following 'group axioms'.

- (0) [Γ is closed under @] $x@y \in \Gamma$ for all $x, y \in \Gamma$ (this verifies that @ is a binary operation)
- (1) [@ is associative] The symbol x@y@z is unambiguous. More precisely, (x@y)@z = x@(y@z) for all $x, y, z \in \Gamma$.
- (2) [Γ has an identity with respect to @] There exists an element $e \in \Gamma$ such that e@x = x = x@e for all $x \in \Gamma$.
- (3) [Γ has inverses with respect to @] Every element of Γ has an inverse in Γ , i.e. for every $x \in \Gamma$ there exists an element $y \in \Gamma$ such that x@y = e. (Usually, y is denoted x^{-1} .)

We concluded lecture by verifying that (\mathcal{G}, \circ) and $(\mathbb{Z}, +)$ are actually groups (by checking that they satisfy all the group axioms).

WWW.MATH.TORONTO.EDU/LGOLDMAK/C01F13/ *E-mail address*: lgoldmak@math.toronto.edu