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The first thing we did was agree on a new notation for groups. Recall that when we discussed
the group G of all isometries, we at some point stopped writing ◦, instead writing expressions such
as ThRθρ. We now adopt the same lazy convention for groups: rather than writing @ as the binary
operation of a group Γ, we’ll simply write the operation as if it were multiplication. In this new
notation, the group axioms become:

(0) Closure: xy ∈ Γ for all x, y ∈ Γ;
(1) Associativity: (xy)z = x(yz) for all x, y, z ∈ Γ;
(2) Identity: there exists e ∈ Γ such that ex = xe = x for every x ∈ Γ;
(3) Inverses: for each x ∈ Γ there exists y ∈ Γ such that xy = e.

Of course, this notation isn’t always ideal. For example, in the group (Z,+) it would be quite
confusing to represent the binary operation as multiplication! So sometimes, when discussing a
specific group, we may sometimes write the binary notation explicitly. But for an ‘abstract’ group,
we’ll take the easy way and drop the binary operation. Note that this also makes it easier to talk
about groups. Rather than writing (Γ,@) we will just write Γ.

Last time we ended by discussing inverses. We started this lecture by proving the following
result, which is unsurprising but reassuring.

Proposition 1. Given a group Γ (with identity e), and suppose x ∈ Γ. Then there exists a unique
y ∈ Γ such that xy = e. Moreover, yx = e.

Thus we can (and will!) denote the inverse of x as x−1; note that we could not meaningfully use
this notation if inverses weren’t unique.

Proof. From the group axiom, we know that there exists y ∈ Γ such that xy = e. Again from the
group axiom, we know there exists z ∈ Γ such that yz = e. But then

x = xe = x(yz) = (xy)z = ez = z,

whence yx = yz = e, which proves the second claim.
We now prove the uniqueness of y. Suppose y1 and y2 are both inverses of x, i.e. xy1 = e and

xy2 = e. By what we proved above, this implies y1x = e and y2x = e. Using a similar trick as
above, we deduce that

y1 = y1xy2 = y2
as claimed. �

Given a group, it’s often useful to discuss smaller groups living inside of it. For example, within
the group G of symmetries, we might wish to study the group of symmetries of some set of points.
This motivates the following notion.

Definition. Given a group Γ and H ⊆ Γ, we say H is a subgroup of Γ iff H is a group under the
same operation as Γ. In this case we write H ≤ Γ.
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For example, G{±1±i} ≤ G, since G{±1±i} is a subset of G and forms a group under composition.
By contrast, {±1} is not a subgroup of (Z,+); it’s a subset of Z, and forms a group under multi-
plication, but does NOT form a group under addition (the binary operation of the bigger group).

Next lecture, we will explore subgroups further.
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