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Problem Set 2

2.1 Given A ∈ R2 such that A ·X = 0 for all X ∈ R2. Prove that A = (0, 0). [Here the operation · is the vector
dot product.]

2.2 Prove that every isometry of the form Th ◦ Rα with α 6= 0 is a rotation. [This is the converse of the
statement we proved in class.]

2.3 Suppose that m is an isometry which satisfies m(0) = 0. Prove that for all w, z ∈ C, we have

m(w + z) = m(w) +m(z).

For the next three problems, we introduce three new terms to describe isometries: primitive, orientation-
preserving, and orientation-reversing. We say φ ∈ G is primitive iff φ is one of Th, Rα, or ρ. (For example,
T2−3i is a primitive isometry, while T2−3i ◦ Rπ/3 is not.) At the end of class on Friday, September 20th, we
stated a lemma that every isometry is a composition of primitive isometries. More precisely, the lemma asserts
that given any φ ∈ G, there exist h ∈ C, α ∈ R, and j ∈ {0, 1} such that

φ = Th ◦Rα ◦ ρj .

If j = 0, we say φ is orientation-preserving ; if j = 1, we say φ is orientation-reversing. For the problems below,
you may assume the lemma is true. (We will prove it this week.)

2.4 Prove that every isometry is either orientation-preserving or orientation-reversing, but not both.

2.5 Prove that a composition of (finitely many) primitive isometries is orientation-preserving iff it has an even
number of ρ’s in it.

2.6 Recall that σL denotes the isometry which reflects across the line L. Suppose L and L′ are two lines in
the plane. What can you say about the isometry σL ◦ σL′? Try to be as specific as possible. Prove whatever
you can.
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