Instructor: Leo Goldmakher

NAME: _____

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC01: GROUPS AND SYMMETRY

Problem Set 3 - due Friday, October 4th

INSTRUCTIONS:

To receive credit, you must turn this in during the first 5 minutes of lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
Staple	
Coverpage	
3.1	
3.2	
3.3	
3.4	
3.5	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:_____

Problem Set 3

3.1 Prove that $R_{\theta}\rho$ is a reflection across a line. Which line?

3.2 Suppose that $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map such that for all $X \in \mathbb{R}^2$, we have |f(X)| = |X|.

(a) Prove that f is either a rotation or a reflection.

(b) Prove that every eigenvalue of f is ± 1 . [Recall that an eigenvalue of f is any $\lambda \in \mathbb{R}$ such that $f(X) = \lambda X$ for some $X \in \mathbb{R}^2$.]

3.3 Suppose $\phi \in G$ is orientation-reversing. Prove that ϕ^2 is a translation.

3.4 Suppose $\phi \in G$. We say ϕ fixes the point $X \in \mathbb{R}^2$ iff $\phi(X) = X$; more generally, we say ϕ fixes the set $S \subseteq \mathbb{R}^2$ iff $\phi(S) = S$. How many points are fixed by a translation? By a rotation? By a glide reflection? How many lines are fixed by each of these? Prove whatever you can. You may assume the Classification Theorem.

3.5 Given a line \mathcal{L} in the plane which makes an angle of $\alpha \in [0, \pi)$ with the *x*-axis. Denote the *x*-intercept by A (if the line intersects the *x*-axis) and the *y*-intercept by B (if the line intersects the *y*-axis). See the figure below.

(a) Write down an explicit isometry ϕ such that $\phi(\mathcal{L})$ is the x-axis. (Write ϕ in the form $T_h R_{\theta}$.)

(b) Recall from lecture that $\gamma_{\mathcal{L},a}$ denotes the glide reflection with respect to the line \mathcal{L} and glide $a \in \mathbb{R}$. (a > 0 means the glide is up / to the right, a < 0 means the glide is down / to the left, and <math>a = 0 means there is no glide.) Using the notation of the picture, suppose A = -2 and $B = 2\sqrt{3}$. Determine $h \in \mathbb{C}, \theta \in [0, 2\pi)$, and $j \in \{0, 1\}$ such that $\gamma_{\mathcal{L},-2} = T_h R_\theta \rho^j$.

The line \mathcal{L} has x-intercept A and yintercept B, and forms an angle α with the x-axis; note that we may assume that $\alpha \in [0, \pi)$.