Instructor: Leo Goldmakher

NAME: _____

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC01: GROUPS AND SYMMETRY

Problem Set 5 – due Monday, October 21st

INSTRUCTIONS:

To receive credit, you must turn this in during the first 5 minutes of lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
Staple	
Coverpage	
5.1	
5.2	
5.3	
5.4	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:_____

Problem Set 5

5.1 Determine whether each of the following is an equivalence relation on \mathcal{G} , the set of all plane isometries. If it is, prove it. If not, show (by example) all the necessary properties it fails to satisfy.

(a) (Quentin) $f \approx g$ iff there exist nonzero integers m and n such that $f^m = g^n$.

- (b) (Jay) $f \approx g$ iff there exists $k \in \mathbb{R}^2$ such that $f = T_k g$.
- (c) (Eric) $f \approx g$ iff f and g fix the same number of points in \mathbb{R}^2 .

Recall that in class we defined an equivalence relation by $f \sim g$ iff there exists $\phi \in \mathcal{G}$ such that $\phi^{-1}f\phi = g$.

5.2 Let \sim denote the equivalence relation define above.

(a) Suppose $f, g \in \mathcal{G}$ are both rotations by the same angle α , but around different points. Prove that $f \sim g$.

(b) Suppose $f, g \in \mathcal{G}$ are both reflections, but across different lines. Prove that $f \sim g$.

- (c) Prove that if $f \sim g$, then $f^2 \sim g^2$.
- (d) Suppose $R_{\alpha} \sim R_{\beta}$ for some $\alpha, \beta \in (-\pi, \pi]$. Prove that $\alpha = \pm \beta$.

5.3 Let \sim denote the equivalence relation define above. Does it distinguish between translations and rotations? In other words, does there exist a nontrivial translation f and a nontrivial rotation g such that $f \sim g$? Either give an example of such isometries (with proofs!), or else prove that no such isometries exist.

5.4 (Challenge question!) Does there exist an equivalence relation on \mathcal{G} such that any two nontrivial rotations are equivalent and any two nontrivial translations are equivalent, but no nontrivial rotation is equivalent to a nontrivial translation?