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Problem Set 6

6.1 Let GL2(Q) denote the set of all 2× 2 matrices with rational entries and nonzero determinent. Prove that
GL2(Q) is a group under matrix multiplication.

6.2 Prove that
(
{0, 1},⊕

)
is a group, where ⊕ is defined by the following table:

⊕ 0 1

0 0 1
1 1 0

6.3 Make the set {0, 1, 2} into a group, by defining a binary operation on it. Present your operation in the
form of a table as above.

6.4 (Courtesy of V. Blomer) Let c be the speed of light. According to Einstein, two velocities v1, v2 pointing
in the same direction can be added by the rule

v1 @ v2 :=
v1 + v2

1 + v1v2/c2
.

(Imagine a person walking inside a moving train from the back to the front of the train; his own speed and the
speed of the train are “added” by the rule above.) Prove that the interval I = (−c, c) under this operation is a
group, i.e. show that I is closed under the operation, and verify that the group axioms are satisfied. Note that
according to this model, nothing can move faster than the speed of light. [Hint: to prove closure, consider the
product (c+ v1)(c+ v2). Why must it be positive? Deduce from this that v1 @ v2 > −c. Now use a similar trick
to prove the upper bound v1 @ v2 < c.]

6.5 Let G{±1±i} denote the symmetries of {±1± i}. Prove that this is a group.

6.6 For each of the following, list all the ways in which it fails to be a group. Whenever a group axiom fails to
be satisfied, give an example illustrating the failure.

(a)
(
Z∗,×

)
where Z∗ is the set of all non-zero integers and × denotes ordinary multiplication.

(b) The set of all subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} under the operation ∩. (Recall that given any two sets A
and B, their intersection (written A ∩B) is the set consisting of all elements belonging to both A and B.)

(c) The set of all positive integers, under the operation @ defined by

a@ b := gcd(a, b).

(Recall that given two positive integers a and b, the greatest common divisor of a and b, denoted gcd(a, b), is
the largest positive integer dividing both a and b.)

(d) The set of all positive integers, under the operation ⊕ defined by

a ⊕ b := lcm(a, b).

(Recall that given two positive integers a and b, the least common multiple of a and b, denoted lcm(a, b), is the
smallest positive integer which is a multiple of both a and b.)

(e) The set of all non-negative integers (i.e. {0, 1, 2, . . .}), under the operation � defined by

a � b := |a− b|.

(In other words, a � b is the distance between a and b.)
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