Instructor: I	∡eo Gol	dmakher
---------------	---------	---------

3.7		
Name:		

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC01: GROUPS AND SYMMETRY

Problem Set 6 - due Monday, October 28st

INSTRUCTIONS:

To receive credit, you must turn this in during the first 5 minutes of lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
Staple	
Coverpage	
6.1	
6.2	
6.3	
6.4	
6.5	
6.6	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:		
------------	--	--

Problem Set 6

- **6.1** Let $GL_2(\mathbb{Q})$ denote the set of all 2×2 matrices with rational entries and nonzero determinent. Prove that $GL_2(\mathbb{Q})$ is a group under matrix multiplication.
- **6.2** Prove that $(\{0,1\},\oplus)$ is a group, where \oplus is defined by the following table:

$$\begin{array}{c|c|c|c} \oplus & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$$

- **6.3** Make the set $\{0,1,2\}$ into a group, by defining a binary operation on it. Present your operation in the form of a table as above.
- **6.4** (Courtesy of V. Blomer) Let c be the speed of light. According to Einstein, two velocities v_1, v_2 pointing in the same direction can be added by the rule

$$v_1 @ v_2 := \frac{v_1 + v_2}{1 + v_1 v_2 / c^2}.$$

(Imagine a person walking inside a moving train from the back to the front of the train; his own speed and the speed of the train are "added" by the rule above.) Prove that the interval I = (-c, c) under this operation is a group, i.e. show that I is closed under the operation, and verify that the group axioms are satisfied. Note that according to this model, nothing can move faster than the speed of light. [Hint: to prove closure, consider the product $(c+v_1)(c+v_2)$. Why must it be positive? Deduce from this that $v_1 @ v_2 > -c$. Now use a similar trick to prove the upper bound $v_1 @ v_2 < c$.]

- **6.5** Let $\mathcal{G}_{\{\pm 1 \pm i\}}$ denote the symmetries of $\{\pm 1 \pm i\}$. Prove that this is a group.
- **6.6** For each of the following, list all the ways in which it fails to be a group. Whenever a group axiom fails to be satisfied, give an example illustrating the failure.
- (a) (\mathbb{Z}^*, \times) where \mathbb{Z}^* is the set of all non-zero integers and \times denotes ordinary multiplication.
- (b) The set of all subsets of $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ under the operation \cap . (Recall that given any two sets A and B, their intersection (written $A \cap B$) is the set consisting of all elements belonging to both A and B.)
- (c) The set of all positive integers, under the operation @ defined by

$$a \otimes b := \gcd(a, b).$$

(Recall that given two positive integers a and b, the greatest common divisor of a and b, denoted gcd(a, b), is the largest positive integer dividing both a and b.)

(d) The set of all positive integers, under the operation \oplus defined by

$$a \oplus b := lcm(a, b).$$

(Recall that given two positive integers a and b, the least common multiple of a and b, denoted lcm(a, b), is the smallest positive integer which is a multiple of both a and b.)

(e) The set of all non-negative integers (i.e. $\{0,1,2,\ldots\}$), under the operation \odot defined by

$$a\,\odot\,b:=|a-b|.$$

2

(In other words, $a \odot b$ is the distance between a and b.)