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Problem Set 7

7.1 Let Γ be a group, and pick any a, b ∈ Γ.

(a) Suppose that there exists an element g ∈ Γ such that ag = g. Prove that a is the identity.

(b) Let bΓ := {bg : g ∈ Γ}. Prove that bΓ = Γ.

7.2 Recall that a magic square is a square array of integers (not necessarily distinct) such that each row, each
column, and the two main diagonals have the same sum.

(a) What can you say about 2× 2 magic squares? Come up with the strongest claim you can, and prove it.

(b) In class, we saw the 3× 3 magic square

8 1 6
3 5 7
4 9 2

This magic square uses each of the numbers from 1 to 9 exactly once. Determine all 3× 3 magic squares with
this property. Prove that you’ve found all of them. [Hint: what can you say about the central square? ]

7.3 (Courtesy of J. Lagarias.) Let S be any set with at least two elements. Define a binary operation on S by
setting ab = b for every a, b ∈ S.

(a) Prove that S is closed under this product, that associativity holds, and that one can get from any element
of S to any other via the operation.

(b) Explain why S is not a group.

7.4 (Courtesy of N. Pflueger) A binary operation on a set S is said to be left transitive if it allows you to get
from any one element to any other by left multiplication, i.e. if for any pair of elements a, b ∈ S there exists
g ∈ S such that ga = b. Similarly, we say the operation is right transitive if there exists an h ∈ S such that
ah = b.

In problem 7.3 you saw a set with binary operation which was associative and right transitive, but not a group.
Let S be a non-empty set with a binary operation (under which S is closed), which is associative and both left
and right transitive. The goal of this exercise is to prove that S is a group under this operation. As usual, we
will denote the binary operation as a product.

(a) If ex = x for some elements e, x ∈ S, we say e is a left identity for x; similarly, if xe = x we say e is a right
identity for x. Prove that an element is a left identity for one element of S if and only if it is a left identity for
every element of S. The same argument shows that the same holds for any right identity.

(b) Prove that S has a unique identity element. [Hint: first show that a left identity exists; similarly, a right
identity exists. Next, prove that given a left and a right identity, the two must be equal. Conclude.]

(c) Deduce that S is a group under the given binary operation.

7.5 Let Γ be a group. Recall that we write H ≤ Γ to denote that H is a subgroup of Γ.

(a) Prove that Z(Γ) ≤ Γ, where Z(Γ) := {g ∈ Γ : ag = ga ∀a ∈ Γ}.

(b) Prove that if K ≤ H and H ≤ Γ, then K ≤ Γ.
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7.6 Given a group Γ, suppose H is a finite subset of Γ which is closed under the binary operation of Γ. (As
usual, we will denote this operation as a product.) The goal of this exercise is to prove that H must be a
subgroup of Γ.

(a) Carefully explain why associativity holds in H.

(b) Prove that the identity e ∈ H. [Hint: Let n = |H|, the order of H. For any a ∈ H which is not the identity,
consider the set S = {a, a2, a3, . . . , an+1}. Why must S be a subset of H? Why must two elements of S be
equal to each other? Deduce that e ∈ S, and therefore, e ∈ H.]

(c) Prove that for all a ∈ H, we have a−1 ∈ H (where a−1 is the inverse of a in Γ).
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