Instructor: Leo Goldmakher

NAME: _____

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC01: GROUPS AND SYMMETRY

Problem Set 7 – due Monday, November 4th

INSTRUCTIONS:

To receive credit, you must turn this in during the first 5 minutes of lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
Staple	
Coverpage	
7.1	
7.2	
7.3	
7.4	
7.5	
7.6	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:

Problem Set 7

7.1 Let Γ be a group, and pick any $a, b \in \Gamma$.

(a) Suppose that there exists an element $g \in \Gamma$ such that ag = g. Prove that a is the identity.

(b) Let $b\Gamma := \{bg : g \in \Gamma\}$. Prove that $b\Gamma = \Gamma$.

7.2 Recall that a magic square is a square array of integers (not necessarily distinct) such that each row, each column, and the two main diagonals have the same sum.

(a) What can you say about 2×2 magic squares? Come up with the strongest claim you can, and prove it.

(b) In class, we saw the 3×3 magic square

8	1	6
3	5	7
4	9	2

This magic square uses each of the numbers from 1 to 9 exactly once. Determine all 3×3 magic squares with this property. Prove that you've found all of them. [*Hint: what can you say about the central square?*]

7.3 (Courtesy of J. Lagarias.) Let S be any set with at least two elements. Define a binary operation on S by setting ab = b for every $a, b \in S$.

(a) Prove that S is closed under this product, that associativity holds, and that one can get from any element of S to any other via the operation.

(b) Explain why S is not a group.

7.4 (Courtesy of N. Pflueger) A binary operation on a set S is said to be *left transitive* if it allows you to get from any one element to any other by left multiplication, i.e. if for any pair of elements $a, b \in S$ there exists $g \in S$ such that ga = b. Similarly, we say the operation is *right transitive* if there exists an $h \in S$ such that ah = b.

In problem 7.3 you saw a set with binary operation which was associative and right transitive, but not a group. Let S be a non-empty set with a binary operation (under which S is closed), which is associative and both left *and* right transitive. The goal of this exercise is to prove that S is a group under this operation. As usual, we will denote the binary operation as a product.

(a) If ex = x for some elements $e, x \in S$, we say e is a *left identity for* x; similarly, if xe = x we say e is a *right identity for* x. Prove that an element is a left identity for one element of S if and only if it is a left identity for every element of S. The same argument shows that the same holds for any right identity.

(b) Prove that S has a unique identity element. [Hint: first show that a left identity exists; similarly, a right identity exists. Next, prove that given a left and a right identity, the two must be equal. Conclude.]

(c) Deduce that S is a group under the given binary operation.

7.5 Let Γ be a group. Recall that we write $H \leq \Gamma$ to denote that H is a subgroup of Γ .

- (a) Prove that $Z(\Gamma) \leq \Gamma$, where $Z(\Gamma) := \{g \in \Gamma : ag = ga \; \forall a \in \Gamma\}$.
- (b) Prove that if $K \leq H$ and $H \leq \Gamma$, then $K \leq \Gamma$.

7.6 Given a group Γ , suppose H is a finite *subset* of Γ which is closed under the binary operation of Γ . (As usual, we will denote this operation as a product.) The goal of this exercise is to prove that H must be a subgroup of Γ .

(a) Carefully explain why associativity holds in H.

(b) Prove that the identity $e \in H$. [*Hint*: Let n = |H|, the order of H. For any $a \in H$ which is not the identity, consider the set $S = \{a, a^2, a^3, \ldots, a^{n+1}\}$. Why must S be a subset of H? Why must two elements of S be equal to each other? Deduce that $e \in S$, and therefore, $e \in H$.]

(c) Prove that for all $a \in H$, we have $a^{-1} \in H$ (where a^{-1} is the inverse of a in Γ).