1	Instructor	Loo	Goldmakher	
ı	instructor:	Leo	Goldmakner	

NT		
Name:		

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC01: GROUPS AND SYMMETRY

Problem Set 8 - due Monday, November 11th

INSTRUCTIONS:

To receive credit, you must turn this in during the first 5 minutes of lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
Staple	
Coverpage	
8.1	
8.2	
8.3	
8.4	
8.5	
8.6	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:		
------------	--	--

Problem Set 8

- **8.1** Suppose Γ is a group and H is a subgroup of Γ . Prove that H and Γ have the same identity.
- **8.2** Given a group Γ and two subgroups X and Y of Γ , define

$$XY := \{xy : x \in X \text{ and } y \in Y\}.$$

- (a) Suppose that H and K are subgroups of a group Γ . Prove that $HK \leq \Gamma$ if and only if HK = KH. [Hint: You may find it useful to first prove that for any group Γ , $\Gamma = \{g^{-1} : g \in \Gamma\}$.]
- (b) Find an example of a group Γ and two subgroups $H, K \leq \Gamma$ such that HK is not a subgroup of Γ .
- **8.3** Recall that given elements $g_1, g_2, \ldots g_n$ of a group Γ , we defined $\langle g_1, g_2, \ldots, g_n \rangle$ to be the smallest subgroup of Γ which contains all of the g_i 's. The goal of this exercise is to make precise what 'smallest' means.
- (a) Given a group Γ and two subgroups H and K of Γ , prove that $H \cap K \leq \Gamma$.
- (b) Given a group Γ and elements $g_1, g_2, \ldots, g_n \in \Gamma$, formulate a precise definition of $\langle g_1, g_2, \ldots, g_n \rangle$. Your definition must not rely on ambiguous words such as 'smallest', and yet should capture your intuition for what smallest means in this context.
- **8.4** Prove that any subgroup of a cyclic group must be cyclic. [Recall that a group Γ is *cyclic* iff it can be generated by a single element, ie if there exists $g \in \Gamma$ such that $\Gamma = \langle g \rangle$. For example, \mathbb{Z} is cyclic, since $\mathbb{Z} = \langle 1 \rangle$.]
- 8.5 Let

$$\mathbf{I} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \quad \text{and} \quad \mathbf{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and set $\mathbf{K} := \mathbf{IJ}$ (matrix multiplication). How many distinct elements are in $\langle \mathbf{I}, \mathbf{J} \rangle$, the subgroup of $GL_2(\mathbb{C})$ generated by \mathbf{I} and \mathbf{J} ? Write all of them down in terms of $\mathbb{1}$, \mathbf{I} , \mathbf{J} , \mathbf{K} .

8.6 Prove that \mathbb{Q}^{\times} is not cyclic.