1	Instructor	Loo	Goldmakher	
ı	instructor:	Leo	Goldmakner	

3.7	
Name:	
INAME.	

University of Toronto Scarborough Department of Computer and Mathematical Sciences

MATC01: GROUPS AND SYMMETRY

Problem Set 9 - due Monday, November 18th

INSTRUCTIONS:

To receive credit, you must turn this in during the first 5 minutes of lecture on the due date. Please print and attach this page as the first page of your submitted problem set.

PROBLEM	MARK
Staple	
Coverpage	
9.1	
9.2	
9.3	
9.4	
9.5	
9.6	
Total	

Please read the following statement and sign below:

I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also understand that I must write down the final version of my assignment in isolation from any other person.

SIGNATURE:

Problem Set 9

- **9.1** Suppose $H \leq \Gamma$ (a group), and let a be any element of Γ .
- (a) Show by example that aH is not necessarily a subgroup of Γ .
- (b) Prove that if H is finite, then |aH| = |H|.
- **9.2** Suppose $H \leq \Gamma$ (a group), and let a be any element of Γ . Above, we saw that sets of the form aH are not necessarily subgroups. It turns out that a slight variant, $aHa^{-1} = \{aha^{-1} : h \in H\}$, is better behaved.
- (a) Prove that $aHa^{-1} \leq \Gamma$.
- (b) Prove that if H is finite, then $|aHa^{-1}| = |H|$.
- (c) Prove that $H \subseteq gHg^{-1}$ for all $g \in \Gamma$ if and only if $H = gHg^{-1}$ for all $g \in \Gamma$.
- **9.3** Given $H \leq \Gamma$ (a group) and $a, b \in \Gamma$, prove that either aH = bH or $aH \cap bH = \emptyset$. [Hint: Start by assuming that aH and bH aren't disjoint. Why must aH = bH?]
- **9.4** Given $H \leq \Gamma$ (a group), recall that we defined

$$[a] := \{ g \in \Gamma : aH = gH \}.$$

- (a) Prove that xH = yH iff [x] = [y]. (Only \Rightarrow was proved in lecture.)
- (b) Prove that xH = yH iff $x^{-1}y \in H$. (Only \Leftarrow was proved in lecture.)
- **9.5** Recall from lecture that given $H \leq \Gamma$ (a group), we define

$$\Gamma/H := \{ [a] : a \in \Gamma \}.$$

- (a) Determine $\mathcal{G}_{\{\pm 1 \pm i\}}/K$, where $\mathcal{G}_{\{\pm 1 \pm i\}}$ is the group of symmetries of the square and $K = \{\mathbb{1}, \rho\}$. Your answer must be explicit and simplified (i.e. it should be a set, in which you explicitly list all the elements without duplicates). Don't worry if your answer is different from what we found in lecture.
- (b) Determine \mathcal{G}/A , where \mathcal{G} denotes the group of plane isometries and $A = \{T_h R_\theta : h \in \mathbb{C}, \theta \in [0, 2\pi)\}$. Again, your answer must be explicit and simplified.
- **9.6** Recall that given $H \leq \Gamma$ (a group), we proved the existence of a set $\overline{\Gamma} \subseteq \Gamma$ such that

$$\Gamma = \bigsqcup_{g \in \overline{\Gamma}} gH.$$

2

- (a) Give two different examples of $\overline{\Gamma}$ for $\Gamma = \mathcal{G}_{\{\pm 1 \pm i\}}$ and $H = \{1, \rho\}$.
- (b) Give two different examples of $\overline{\Gamma}$ for $\Gamma = \mathcal{G}$ and H = A as in 9.5(b).