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Problem Set 10
I recommend proceeding in order, as some problems are easier to solve using the results of prior problems.

10.1 Recall that the set Z/nZ = {[0], [1], . . . , [n − 1]} forms a group under addition: [a] + [b] := [a + b]. We
now define a new binary operation, multiplication: [a] · [b] := [ab]. For example, in Z/7Z we have [3] · [4] = [5].

(a) Prove that Z/7Z− {[0]} forms a group under multiplication. Why do we have to remove the element [0]?

(b) Find the smallest set S such that Z/8Z− S forms a group under multiplication.

10.2 The goal of this exercise is to prove the following:

Theorem. Suppose the order of a group Γ is a multiple of 3. Then Γ has an element of order 3.

In fact, this statement holds with 3 replaced by any prime, but you don’t need to prove this.

Proof. Let
A := {(x, y, z) ∈ Γ3 : xyz = e}.

In words, A is the set of all ordered triples of elements of Γ whose product is the identity. Consider the function

σ : A −→ A
(x, y, z) 7−→ (z, x, y)

Let Aσ denote the set of all fixed points of σ, i.e.

Aσ := {a ∈ A : σ(a) = a}.

Observe that Aσ is nonempty, since it contains the trivial fixed point (e, e, e).

(a) Prove that if there exists a nontrivial fixed point of σ, then Γ contains an element of order 3.

(b) Prove that A − Aσ =
⋃

a∈A−Aσ

[a]σ, where [a]σ := {f(a) : f ∈ 〈σ〉}. (Here 〈σ〉 denotes the subgroup of SA

generated by σ.)

(c) Prove that for all a, b ∈ A, either [a]σ = [b]σ or [a]σ ∩ [b]σ = ∅.

(d) Prove that |A−Aσ| is a multiple of 3.

(e) Conclude the proof of the theorem. [Hint: What can you say about |A|? ]

10.3 The theorem above holds when 3 is replaced by any prime (you don’t need to prove this). However, show
by example that 3 cannot be replaced by an arbitrary integer. In other words, find a group Γ and a divisor d
of |Γ| such that Γ has no elements of order d.

10.4 Consider the following group presentation:

Γ = 〈α, β : α3 = 1, β3 = 1, βα = α2β〉

(a) Express α2β5α−2β in the form αmβn, where 0 ≤ m ≤ 2 and 0 ≤ n ≤ 2.

(b) Determine the order of Γ.
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10.5 Given a group Γ, let Z(Γ) = {a ∈ Γ : ag = ga for every g ∈ Γ}.

(a) Prove that Z(Γ) E Γ.

(b) Suppose Γ/Z(Γ) is cyclic. Prove that Γ is abelian. [Hint: Prove that there exists g ∈ Γ such that

Γ =
⋃
n∈Z

gnZ(Γ). Conclude.]

10.6 Suppose that a non-trivial group Γ has no non-trivial proper subgroups.

(a) Prove that Γ is cyclic.

(b) Prove that Γ has finite order. [Hint: Suppose Γ were infinite, and derive a contradiction.]

(c) Prove that Γ has prime order. [Hint: Say Γ = 〈g〉 and has order n. What can you say about 〈g2〉? 〈g3〉?]

10.7 Suppose H and K are groups. Consider the set H ×K under the binary operation defined by

(h1, k1) · (h2, k2) := (h1h2, k1k2).

(a) Prove that H×K is a group under this operation. If H and K are both finite, what is the order of H×K?

(b) Prove that (H × {eK}) E (H ×K).

(c) Prove that (H ×K)/(H × {eK}) ' K. [Hint: First prove that [(x, y)] = (H, y) for any (x, y) ∈ H ×K.]

10.8 Given Γ a group, recall that SΓ denotes the group of all bijections from Γ to itself (under composition).
Given g ∈ Γ, define the function

φg : Γ −→ Γ

a 7−→ ga

Thus, we have a bunch of different functions φg, one for each g ∈ Γ.

(a) Prove that φg ∈ SΓ for every g ∈ Γ.

(b) Let φ : Γ→ SΓ be the function defined by φ(g) = φg. Prove that φ is an injective homomorphism.

(c) Deduce that any group Γ is isomorphic to a subgroup of SΓ.

10.9 Given k ∈ N, we denote S{1,2,...,k} by Sk; this is usually called the symmetric group on k letters.

(a) Prove that Sm × Sn is isomorphic to a subgroup of Sm+n.

(b) Use part (a) to prove that m!n!
∣∣ (m+ n)!
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