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(1) Given a group Γ and a subgroup H ≤ Γ, recall that

Γ/H := {[g] : g ∈ Γ},
where [g] := {a ∈ Γ : aH = gH}.

(a) (5 points) Prove that [g] = gH for any g ∈ Γ.

As usual, we prove this in two steps.

[g] ⊆ gH

Pick x ∈ [g]. Then by definition, xH = gH . Since H is a subgroup of Γ, it
contains the identity, whence

x ∈ xH = gH.

gH ⊆ [g]

Pick x ∈ gH . Then x = gh for some h ∈ H . Since H is a group, we know
(from a homework problem) that hH = H . It follows by associativity that

xH = ghH = gH,

whence x ∈ [g].

(b) (5 points) Without referring to anything from lecture or the homework, prove that for
any a, b ∈ Γ, either [a] = [b] or [a] ∩ [b] = ∅.

Given a, b ∈ Γ. If [a] ∩ [b] = ∅, we’re done. If [a] ∩ [b] 6= ∅, then there exists
x ∈ [a] ∩ [b]. This implies that xH = aH and xH = bH , whence aH = bH . By
part (a), we conclude that [a] = [b].

(c) (5 points) Recall that we defined a binary operation on Γ/H by setting

[a][b] := [ab].

Carefully explain (with a supporting example) why this operation might not be well-
defined.

The problem with the ‘definition’ of the binary operation above is that it’s
possible for [a] = [a′] but [a][b] 6= [a′][b]. How? First, observe that [h] = [e] for
all h ∈ H . If [e][g] = [h][g] for all g ∈ Γ and all h ∈ H , then (by ‘definition’)
for all g ∈ Γ and h ∈ H we would have [g] = [hg], i.e. gH = hgH , i.e.
g−1hgH = H . In particular, since e ∈ H , this would imply that g−1Hg ⊆ H
for every g ∈ Γ. But this may easily fail to be true. For example, consider the
group G{±1±i} of symmetries of the square, and the subgroup H := {1, ρ}.
We have

R−1
π/2ρRπ/2 = Rπρ 6∈ H.

This tells us that [1][Rπ/2] 6= [ρ][Rπ/2] in G{±1±i}/H , even though [1] = [ρ].

continued on page 3



Final Exam MATC01 page 3 of 8

(2) (15 points) Prove that ' (isomorphism) is an equivalence relation. Do not assume any re-
sults from lecture or the homework.

We show that ' satisfies the three defining properties of equivalence relations:

(1) Reflexive. For any group Γ, we have Γ ' Γ, since

Γ
∼−→Γ

g 7−→ g

(2) Symmetry. Suppose Γ ' H . Then by definition there exists an isomorphism
φ : Γ

∼−→H . I claim that φ−1 : H
∼−→Γ. It is clear that it is bijective (since φ is), so it

suffices to prove that φ−1 is a homomorphism. Given x, y ∈ H , let a := φ−1(x) and
b := φ−1(y); these are both defined because φ is bijective. Then

φ−1(xy) = φ−1
(
φ(a)φ(b)

)
= φ−1

(
φ(ab)

)
= ab = φ−1(x)φ−1(y),

which shows that φ−1 is a homomorphism. We conclude that φ−1 is an isomor-
phism from H to Γ, whence H ' Γ.

(3) Transitive. Suppose Γ ' H and H ' K. Then there exist isomorphisms

φ : Γ
∼−→H and ψ : H

∼−→K.

I claim that ψ ◦ φ is an isomorphism from Γ to K. It is clearly bijective, since both
ψ and φ are. Also, it is a homomorphism since for any a, b ∈ Γ we have

ψ ◦ φ(ab) = ψ
(
φ(a)φ(b)

)
= ψ

(
φ(a)

)
ψ
(
φ(b)

)
=
(
ψ ◦ φ(a)

)(
ψ ◦ φ(b)

)
.

We conclude that Γ ' K.

continued on page 4
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(3) Recall that G denotes the group of plane isometries (viewing the plane as C). Consider the
set of all symmetries of Z:

GZ := {g ∈ G : g(Z) = Z}.
Thus, for example, T3 (the translation to the right by 3 units) lives in GZ, while T2i (the
translation up by 2 units) does not.

(a) (10 points) Determine (with proof!) an explicit description of the set GZ. (In other
words, list all the elements of GZ and prove that your list is complete.)

I claim that

GZ =
{
TnR

j
πρ

k : n ∈ Z, j, k ∈ {0, 1}
}

To see this, suppose φ ∈ GZ. From our work on primitive isometries in class,
we know that there exist h ∈ C, θ ∈ [0, 2π), and k ∈ {0, 1} such that

φ = ThRθρ
k.

Note that φ(0) = h; since φ fixes Z, we deduce that h ∈ Z. Next, observe that
φ(1) = h + eiθ. Since h ∈ Z, we see that eiθ ∈ Z. But this is only possible if θ
is a multiple of π. Thus, φ must be of the form TnR

j
πρ

k for some n ∈ Z, and
j, k ∈ {0, 1}. It now remains only to show that every isometry of this form
fixes Z.

A quick calculation shows that

TnR
j
πρ

k(m) = n+ (−1)jm

for any m ∈ Z, and it immediately follows that TnRj
πρ

k(Z) ⊆ Z. Moreover,
observe that given any ` ∈ Z, we have

TnR
j
πρ

k
(

(−1)j(`− n)
)

= `.

This shows that Z ⊆ TnR
j
πρ

k(Z). Thus, we conclude that TnRj
πρ

k(Z) = Z.

(b) (10 points) Let T := {Tn : n ∈ Z}. Prove that T E GZ, and that

GZ/T ' V,

where V = 〈a, b : a2 = b2 = e, ab = ba〉 is the Klein V group. [Hint: Although it’s not the
only way to prove this, you may find the 1st isomorphism theorem helpful.]

Consider the map

ϕ : GZ −→ V

TnR
j
πρ

k 7−→ ajbk.

(Note that this is well-defined, since Rj
π = Rj′

π iff aj = aj
′ , and ρk = ρk

′ iff
bk = bk

′ .) I claim ϕ is a homomorphism. To see this, first note that ρ and
Tm commute for any integer m. Also, ρ and Rπ commute. Finally, Rj

πTm =
T(−1)jmR

j
π. Applying these relations, we see that

ϕ(TnR
j
πρ

k ◦ TmRj′

π ρ
k′) = ϕ(Tn+(−1)jmR

j+j′

π ρk+k′) = aj+j
′
bk+k′ .

Now since V is abelian, we have

aj+j
′
bk+k′ = ajbkaj

′
bk

′
= ϕ(TnR

j
πρ

k)ϕ(TmR
j′

π ρ
k′).

This proves that ϕ is a homomorphism.

It is clear that the image of ϕ is all of V , while the kernel of ϕ is T . The 1st
isomorphism theorem then implies that T E GZ and that

GZ/T ' V.

continued on page 5
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(4) (15 points) State and prove Cauchy’s theorem for abelian groups, using the method dis-
cussed in lecture.

This is proved in the lecture notes.

continued on page 6
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(5) (15 points) State and prove the 1st isomorphism theorem.

This is proved in the lecture notes.

continued on page 7
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(6) Given a group Γ, consider the set Γ̂ consisting of all homomorphisms χ : Γ → C×. (Γ̂ is
called the dual group of Γ; the elements χ of Γ̂ are called characters of Γ.) Given any χ, ψ ∈ Γ̂,
we define the function χψ by setting

χψ(g) := χ(g)ψ(g).

Note that the right hand side is ordinary multiplication of complex numbers.

(a) (5 points) Prove that Γ̂ is a group under the multiplication defined above. [Hint: You
may assume that multiplication in C× is associative.]

To prove Γ̂ is a group, we check the four group axioms.

(0) Closure. Given χ, ψ ∈ Γ̂, I claim χψ ∈ Γ̂. It suffices to show that χψ is a
homomorphism. For any a, b ∈ Γ, we have

χψ(ab) = χ(ab)ψ(ab) = χ(a)χ(b)ψ(a)ψ(b) = χψ(a)χψ(b)

since C× is abelian.

(1) Associativity. Given χ, ψ, λ ∈ Γ̂, I claim that (χψ)λ = χ(ψλ). For any g ∈ Γ
we have

(χψ)λ(g) =
(
χ(g)ψ(g)

)
λ(g) = χ(g)

(
ψ(g)λ(g)

)
= χ(ψλ)(g),

by the associativity of C×.

(2) Identity. The trivial homomorphism χ0 : Γ→ C× defined by χ0(g) = 1 for
all g ∈ Γ is the identity of Γ̂, since it is easily checked that for any ψ ∈ Γ̂ we
have χ0ψ = ψ = ψχ0.

(3) Inverses. Given χ ∈ Γ̂, define the function χ : Γ→ C× by

χ(g) :=
1

χ(g)
.

This function is well-defined, since χ(g) 6= 0 for all g ∈ Γ. It also lives in Γ̂,
since

χ(ab) =
1

χ(ab)
=

1

χ(a)
· 1

χ(b)
= χ(a)χ(b).

Finally, observe that χχ = χ0. Thus, we’ve shown that every element χ ∈ Γ̂

has an inverse χ ∈ Γ̂.

(b) (5 points) Prove that if Γ is finite, then |χ(g)| = 1 for all g ∈ Γ and all χ ∈ Γ̂. (Here |χ(g)|
denotes absolute value of the complex number χ(g), not the order of an element.)

By one of the consequences of Lagrange’s theorem (sometimes called Euler’s
theorem), we know that a|Γ| = e for every a ∈ Γ. It follows that, for any χ ∈ Γ̂
and any g ∈ Γ, we have

χ(g)|Γ| = χ
(
g|Γ|
)

= χ(e) = 1.

In particular, we see that

|χ(g)||Γ| = 1,

whence |χ(g)| = 1 as claimed.

continued on page 8
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(c) (5 points) Let V = {e, a, b, ab} denote the Klein V group. Prove that V̂ ' V .

First, observe that if χ ∈ V̂ and g ∈ V , then χ(g)2 = χ(g2) = χ(e) = 1, whence

χ(g) = ±1.

Since χ(e) = 1 and χ(ab) = χ(a)χ(b), we see that χ is completely determined
by its values at a and b. It follows that V̂ contains precisely four characters:
• χ0, the trivial character which maps every element of V to 1;
• ψ, which sends a to 1 and b to −1;
• λ, which sends a to −1 and b to 1; and
• ψλ, which sends both a and b to −1.

From class, we know that there are precisely two groups of order 4 (up to
isomorphism). Since χ2 = χ0 for any χ ∈ V̂ , we conclude that V̂ isn’t cyclic;
therefore, it must be isomorphic to V as claimed.

(d) (5 points) Suppose Γ is an arbitrary finite group. Prove that ̂̂Γ (i.e. the dual of the dual)
is isomorphic to Γ. You may assume (without proof) that given any non-identity ele-
ment g ∈ Γ, there exists χ ∈ Γ̂ such that χ(g) 6= 1.

This is left as a challenge problem!

Total Marks = 100 points


