LECTURE 15: SUMMARY

In today's lecture, we proved the following result (which is half of David's conjecture from last lecture):

Theorem 1. If (m, n) = 1, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Right off the bat, note that the hypothesis that m and n are relatively prime is necessary. For example, $\varphi(12) \neq \varphi(2)\varphi(6)$. We also practiced using this theorem to calculate $\varphi(n)$. As we saw, whenever we could factor n, the theorem made it easy to figure out $\varphi(n)$. Unfortunately, if n is not easy to factor, then it's less clear how to determine $\varphi(n)$. We will discuss this in more depth later, when talking about the RSA encryption algorithm.

Before writing down the proof of theorem, we discuss the strategy. By definition, we have

$$\varphi(mn) = |\mathbb{Z}_{mn}^{\times}|.$$

What about $\varphi(m)\varphi(n)$? A bit of thought showed that this, too, measures the size of a set:

$$\varphi(m)\varphi(n) = |\mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}|$$

where $A \times B := \{(a, b) : a \in A, b \in B\}$. Thus, if we can show that the two sets \mathbb{Z}_{mn}^{\times} and $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$ have the same size, we win. How will we do this? We look for a bijection between the two sets, i.e. a way of pairing off elements of the two sets. Shichu suggested the following function:

$$\tau : \mathbb{Z}_{mn}^{\times} \longrightarrow \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}
 a \longmapsto (a \pmod{m}, a \pmod{n})$$

where $x \pmod{d}$ denotes the unique element of \mathbb{Z}_d which is congruent to $x \pmod{d}$. If we can show that this is a bijection – i.e. that for every $(x, y) \in \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$, there exists a unique $a \in \mathbb{Z}_{mn}^{\times}$ such that $\sigma(a) = (x, y)$ – then it would immediately follow that \mathbb{Z}_{mn}^{\times} and $\mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$ have the same number of elements.

Before going into the proof of the theorem, we state a useful tool:

Lemma 2. Suppose (a, N) = 1. Then the integer $a \pmod{N}$ is also relatively prime to N, i.e. $a \pmod{N} \in \mathbb{Z}_N^{\times}$.

I leave the proof of this lemma as an exercise.

Proof. Consider the function σ defined above. We prove that it's a bijection in three steps:

(1) σ is well-defined, i.e. for all $x \in \mathbb{Z}_{mn}^{\times}$ there exists a unique $(a, b) \in \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$ such that $\sigma(x) = (a, b)$;

Date: March 5th, 2013.

- (2) σ is **surjective**, i.e. for all $(a, b) \in \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$ there exists at least one $x \in \mathbb{Z}_{mn}^{\times}$ such that $\sigma(x) = (a, b)$; and
- (3) σ is **injective**, i.e. for all $(a, b) \in \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$ there exists at most one $x \in \mathbb{Z}_{mn}^{\times}$ such that $\sigma(x) = (a, b)$.

First, why is σ well-defined? Well, certainly $\sigma(x) \in \mathbb{Z}_m \times \mathbb{Z}_n$; what's not immediate is that $\sigma(x) \in \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$. However, armed with the Lemma above this isn't so difficult. Since $x \in \mathbb{Z}_{mn}^{\times}$, we know that (x, mn) = 1. It follows that (x, m) = 1, whence (by the lemma) the integer $x \pmod{m} \in \mathbb{Z}_m^{\times}$. The same goes for $x \pmod{n}$, of course.

Next, why is σ surjective? Given $(a, b) \in \mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$, can we find an $x \in \mathbb{Z}_{mn}^{\times}$ such that $\sigma(x) = (a, b)$? It's easy to see that this is equivalent to finding an $x \in \mathbb{Z}_{mn}^{\times}$ such that

$$x \equiv a \pmod{m}$$
 and $x \equiv b \pmod{n}$.

The trick is to write $x = (\cdots)m + (\cdots)n$, and find appropriate ways to fill in the blanks. The advantage of writing x this way is that when we reduce $x \pmod{m}$ we can focus on just the second term, while when we reduce $(\mod n)$ we can focus on just the first term. A bit of thought showed that we should choose the first blank to be bm^{-1} , where m^{-1} denotes the inverse of m in \mathbb{Z}_n^{\times} , and the second blank to be an^{-1} , where n^{-1} denotes the inverse of n in \mathbb{Z}_m^{\times} .¹ In any event, let

$$x = (bm^{-1})m + (an^{-1})n.$$

It's easy to check that $x \pmod{m} = a$ and $x \pmod{n} = b$. The only remaining difficulty is that x is just some integer; it might not be an element of \mathbb{Z}_{mn}^{\times} ! Fortunately, this can be fixed. I leave this as an exercise.

Finally, why is σ injective? Well, suppose $\sigma(x) = \sigma(y)$ for some $x, y \in \mathbb{Z}_{mn}^{\times}$. Then

$$x \equiv y \pmod{m}$$
 and $x \equiv y \pmod{n}$.

It follows that $m \mid x - y$ and also $n \mid x - y$. By problem 1.9 from your homework, it follows that $mn \mid x - y$, i.e. that $x \equiv y \pmod{m}n$. Thus, x = y, so σ is injective.

Make sure that you go through and understand the theorem properly; there were some gaps in the sketch above. Among other questions, you should ask yourself: where did we use that (m, n) = 1?

¹Actually, if we were being super careful, we should be referring to $n \pmod{m}$ and $m \pmod{n}$ in the previous sentence, rather than to n and m themselves.