
Midterm Solutions

by Pinar Colak

(1) By Chebyshev’s Theorem, we know that there exists two positive real numbers α
and β such that

αx

log x
< π(x) <

βx

log x
.

Let x = pn, that is, the nth prime number, then π(pn) = n, and the inequality
becomes

αpn
log pn

< n <
βpn

log pn
or in other words,

αpn < n log pn < βpn. (*)

Note that n < pn, and this implies that log n < log pn. The inequality (*) implies

n log pn < βpn

=⇒ 1

β
n log pn < pn

=⇒ 1

β
n log n < pn.

Taking a = 1
β gives the claimed lower bound an log n < pn.

For the upper bound, we first recall the fact that log x <
√
x for x > 1. Plugging

this into (*) gives

αpn < n log pn < n
√
pn.

Thus,
√
pn <

n

α

=⇒ 1

2
log pn < log n− logα

=⇒ log pn < 2 log n− 2 logα

=⇒ αpn < n log pn < 2n log n− 2n logα

=⇒ pn <
2n log n− 2n logα

α
=

2− 2 logα
logn

α
(n log n).

Note that logα might be negative, so we cannot just take b = 2
α . However, the more

complicated choice b =
2 + 2

∣∣∣ logαlog 2

∣∣∣
α

does the trick: pn < bn log n for all n > 2.

(2) There exists some integer a such that a 6 x < a + 1 (so [x] = a). It follows that
2a 6 2x < 2a+ 2, whence [2x] = 2a or 2a+ 1. Thus

[2x]− 2[x] = (2a or 2a+ 1)− 2a = 0 or 1.
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(3) (a) We have

13! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13

= 210 · 35 · 53 · 7 · 11 · 13.

We get that ord2(13!) = 10 and ord3(13!) = 5.

(b) First, observe that

ordp(m) =
∑
k>1
s.t.
pk|m

1

Thus, we have

ordp(n!) =
∑
m6n

ordp(m) =
∑
m6n

∑
k>1
s.t.
pk|m

1

=
∑
k>1

∑
m6n
s.t.
pk|m

1 =
∑
k>1

∑
d6 n

pk

1 (writing m = pkd)

=
∑
k>1

⌊
n

pk

⌋
.

Note that 2n > n for all n ∈ N. It follows that for all k > n, we have

pk > pn > 2n > n.

Thus, for all k > n, we have 0 6 n
pk
< 1, i.e.

⌊
n
pk

⌋
= 0. We conclude that

ordp(n!) =
∑
k>1

⌊
n

pk

⌋
=

n∑
k=1

⌊
n

pk

⌋
.

(c) First rewrite

ordp

(
2n

n

)
= ordp(

(2n)!

(n!)2
).

By using the rules of ordp(n) we can write

ordp(
(2n)!

(n!)2
) = ordp((2n)!)− ordp((n!)2)

= ordp((2n)!)− 2ordp(n!).

By using part (b), we get

=

2n∑
k=1

⌊
2n

pk

⌋
− 2

n∑
k=1

⌊
n

pk

⌋
.
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Note that
⌊
n
pk

⌋
= 0 whenever pk > n. This is the case for k = n+ 1, · · · , 2n, hence

2n∑
k=n+1

⌊
n

pk

⌋
= 0.

So subtract twice of it from the previous equality:

=
2n∑
k=1

⌊
2n

pk

⌋
− 2

n∑
k=1

⌊
n

pk

⌋
− 2

2n∑
k=n+1

⌊
n

pk

⌋

=
2n∑
k=1

⌊
2n

pk

⌋
− 2

2n∑
k=1

⌊
n

pk

⌋

=
2n∑
k=1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
.

Let m = ordp((2n!)), which means that pm|(2n!). This implies that pm < 2n,

which can be rewritten as m < log(2n)
log p , hence

⌊
2n
pk

⌋
gives 0 for all k >

⌊
log(2n)
log p

⌋
. By

using this, we can rewrite the equality above as

=

⌊
log(2n)
log p

⌋∑
k=1

(

⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
).

By using M2, we know that each term inside this sum is either 1 or 0. Hence the
total sum is less then or equal to⌊

log(2n)

log p

⌋
6

log(2n)

log p
=

log n

log p
+

log 2

log p
6

log n

log p
+ 2.

(4) Since p > 5, we see that (p, 3) = 1. Fermat’s Little Theorem immediately implies
that p2 ≡ 1 (mod 3). In other words,

3 | p2 − 1.

Since p is odd, we see that (p, 8) = 1, whence p ∈ Z×8 . As we have seen in lecture,
n2 = 1 for all n ∈ Z×8 ; it follows that

8 | p2 − 1.

Finally, by Problem 1.9(i) from the first problem set, we conclude that 24 | p2 − 1.

(5) First we will rewrite n4 + n2 + 1 to factorize it:

n4 + n2 + 1 = n4 + n2 + 1 + n2 − n2 = n4 + 2n2 + 1− n2

= (n2 + 1)2 − n2 = (n2 − n+ 1)(n2 + n+ 1).
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If n4 + n2 + 1 is a prime number, then its only factors are 1 and itself, hence
either n2 − n+ 1 or n2 + n+ 1 is 1. Since n2 + n+ 1 is always greater than 3 if n is
a natural number, so we get that n2 − n+ 1 has to be 1. Let’s solve for n:

n2 − n+ 1 = 1

n2 − n = 0

n(n− 1) = 0,

hence either n = 0 or n = 1. It is given that n is a natural number, so n 6= 0.
The only possible n such that n4 + n2 + 1 is prime is n = 1. In this case we get
1 + 1 + 1 = 3, which is indeed a prime number. So the list consists of only n = 1.

(6) (a) Since (A,B) = 1, we know that there exist integers x′ and y′ such that

Ax′ +By′ = 1.

Multiply both sides by C:

ACx′ +BCy′ = C

Ax+By = C,

where x = Cx′ and y = Cy′.

(b) We will prove a stronger result (given by David Salwinski on his midterm): if
C > AB, then there exist positive integer solutions. From part (a), we know that
we can find integers x′ and y′ such that Ax′ +By′ = C. Note that

Ax′ +By′ = C > AB,

since both A and B are positive. Divide both sides by AB:

x′

B
+
y′

A
> 1

y′

A
− (−x

′

B
) > 1.

This implies that the length of the interval (−x′

B ,
y′

A ) is greater than 1, so there must

be an integer K lying in it. Then we get −x′

B < K which gives x′ + KB > 0, and
y′

A > K which gives y′ −KA > 0. Finally, we show that these two positive integers
satisfy the given equation:

A(x′ +KB) +B(y′ −KA) = Ax′ +KAB +By′ −KAB
= Ax′ +By′ = C.


