MIDTERM SOLUTIONS

by Pinar Colak

(1) By Chebyshev's Theorem, we know that there exists two positive real numbers α and β such that

$$\frac{\alpha x}{\log x} < \pi(x) < \frac{\beta x}{\log x}.$$

Let $x = p_n$, that is, the n^{th} prime number, then $\pi(p_n) = n$, and the inequality becomes

$$\frac{\alpha p_n}{\log p_n} < n < \frac{\beta p_n}{\log p_n}$$

or in other words,

$$\alpha p_n < n \log p_n < \beta p_n. \tag{*}$$

Note that $n < p_n$, and this implies that $\log n < \log p_n$. The inequality (*) implies

$$n \log p_n < \beta p_n$$

$$\Longrightarrow \frac{1}{\beta} n \log p_n < p_n$$

$$\Longrightarrow \frac{1}{\beta} n \log n < p_n.$$

Taking $a = \frac{1}{\beta}$ gives the claimed lower bound $an \log n < p_n$.

For the upper bound, we first recall the fact that $\log x < \sqrt{x}$ for $x \ge 1$. Plugging this into (*) gives

$$\alpha p_n < n \log p_n < n \sqrt{p_n}$$
.

Thus,

$$\sqrt{p_n} < \frac{n}{\alpha}$$

$$\implies \frac{1}{2} \log p_n < \log n - \log \alpha$$

$$\implies \log p_n < 2 \log n - 2 \log \alpha$$

$$\implies \alpha p_n < n \log p_n < 2n \log n - 2n \log \alpha$$

$$\implies p_n < \frac{2n \log n - 2n \log \alpha}{\alpha} = \frac{2 - 2 \frac{\log \alpha}{\log n}}{\alpha} (n \log n).$$

Note that $\log \alpha$ might be negative, so we cannot just take $b = \frac{2}{\alpha}$. However, the more

complicated choice $b = \frac{2+2\left|\frac{\log \alpha}{\log 2}\right|}{\alpha}$ does the trick: $p_n < bn \log n$ for all $n \ge 2$.

(2) There exists some integer a such that $a \le x < a+1$ (so [x]=a). It follows that $2a \le 2x < 2a+2$, whence [2x]=2a or 2a+1. Thus

$$[2x] - 2[x] = (2a \text{ or } 2a + 1) - 2a = 0 \text{ or } 1.$$

(3) (a) We have

$$13! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13$$
$$= 2^{10} \cdot 3^5 \cdot 5^3 \cdot 7 \cdot 11 \cdot 13.$$

We get that $ord_2(13!) = 10$ and $ord_3(13!) = 5$.

(b) First, observe that

$$\operatorname{ord}_p(m) = \sum_{\substack{k \geqslant 1\\ \text{s.t.}\\ p^k \mid m}} 1$$

Thus, we have

$$\operatorname{ord}_{p}(n!) = \sum_{m \leqslant n} \operatorname{ord}_{p}(m) = \sum_{m \leqslant n} \sum_{\substack{k \geqslant 1 \\ \text{s.t.} \\ p^{k} \mid m}} 1$$

$$= \sum_{k \geqslant 1} \sum_{\substack{m \leqslant n \\ \text{s.t.} \\ p^{k} \mid m}} 1 = \sum_{k \geqslant 1} \sum_{d \leqslant \frac{n}{p^{k}}} 1 \quad \text{(writing } m = p^{k}d\text{)}$$

$$= \sum_{k \geqslant 1} \left\lfloor \frac{n}{p^{k}} \right\rfloor.$$

Note that $2^n \ge n$ for all $n \in \mathbb{N}$. It follows that for all k > n, we have

$$p^k > p^n \geqslant 2^n \geqslant n.$$

Thus, for all k > n, we have $0 \leqslant \frac{n}{p^k} < 1$, i.e. $\left\lfloor \frac{n}{p^k} \right\rfloor = 0$. We conclude that

$$\operatorname{ord}_p(n!) = \sum_{k \geqslant 1} \left\lfloor \frac{n}{p^k} \right\rfloor = \sum_{k=1}^n \left\lfloor \frac{n}{p^k} \right\rfloor.$$

(c) First rewrite

$$\operatorname{ord}_p\binom{2n}{n} = \operatorname{ord}_p(\frac{(2n)!}{(n!)^2}).$$

By using the rules of $\operatorname{ord}_p(n)$ we can write

$$\operatorname{ord}_{p}\left(\frac{(2n)!}{(n!)^{2}}\right) = \operatorname{ord}_{p}((2n)!) - \operatorname{ord}_{p}((n!)^{2})$$
$$= \operatorname{ord}_{p}((2n)!) - 2\operatorname{ord}_{p}(n!).$$

By using part (b), we get

$$= \sum_{k=1}^{2n} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \sum_{k=1}^n \left\lfloor \frac{n}{p^k} \right\rfloor.$$

Solutions 3

Note that $\left\lfloor \frac{n}{p^k} \right\rfloor = 0$ whenever $p^k > n$. This is the case for $k = n + 1, \dots, 2n$, hence

$$\sum_{k=n+1}^{2n} \left\lfloor \frac{n}{p^k} \right\rfloor = 0.$$

So subtract twice of it from the previous equality:

$$= \sum_{k=1}^{2n} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \sum_{k=1}^{n} \left\lfloor \frac{n}{p^k} \right\rfloor - 2 \sum_{k=n+1}^{2n} \left\lfloor \frac{n}{p^k} \right\rfloor$$
$$= \sum_{k=1}^{2n} \left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \sum_{k=1}^{2n} \left\lfloor \frac{n}{p^k} \right\rfloor$$
$$= \sum_{k=1}^{2n} \left(\left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor \right).$$

Let $m = \operatorname{ord}_p((2n!))$, which means that $p^m|(2n!)$. This implies that $p^m < 2n$, which can be rewritten as $m < \frac{\log(2n)}{\log p}$, hence $\left\lfloor \frac{2n}{p^k} \right\rfloor$ gives 0 for all $k > \left\lfloor \frac{\log(2n)}{\log p} \right\rfloor$. By using this, we can rewrite the equality above as

$$= \sum_{k=1}^{\left\lfloor \frac{\log(2n)}{\log p} \right\rfloor} \left(\left\lfloor \frac{2n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor \right).$$

By using M2, we know that each term inside this sum is either 1 or 0. Hence the total sum is less then or equal to

$$\left\lfloor \frac{\log(2n)}{\log p} \right\rfloor \leqslant \frac{\log(2n)}{\log p} = \frac{\log n}{\log p} + \frac{\log 2}{\log p} \leqslant \frac{\log n}{\log p} + 2.$$

(4) Since $p \ge 5$, we see that (p,3) = 1. Fermat's Little Theorem immediately implies that $p^2 \equiv 1 \pmod{3}$. In other words,

$$3 \mid p^2 - 1$$
.

Since p is odd, we see that (p,8)=1, whence $p\in\mathbb{Z}_8^{\times}$. As we have seen in lecture, $n^2=1$ for all $n\in\mathbb{Z}_8^{\times}$; it follows that

$$8 \mid p^2 - 1.$$

Finally, by Problem 1.9(i) from the first problem set, we conclude that $24 \mid p^2 - 1$.

(5) First we will rewrite $n^4 + n^2 + 1$ to factorize it:

$$n^{4} + n^{2} + 1 = n^{4} + n^{2} + 1 + n^{2} - n^{2} = n^{4} + 2n^{2} + 1 - n^{2}$$
$$= (n^{2} + 1)^{2} - n^{2} = (n^{2} - n + 1)(n^{2} + n + 1).$$

If $n^4 + n^2 + 1$ is a prime number, then its only factors are 1 and itself, hence either $n^2 - n + 1$ or $n^2 + n + 1$ is 1. Since $n^2 + n + 1$ is always greater than 3 if n is a natural number, so we get that $n^2 - n + 1$ has to be 1. Let's solve for n:

$$n^2 - n + 1 = 1$$
$$n^2 - n = 0$$
$$n(n - 1) = 0,$$

hence either n=0 or n=1. It is given that n is a natural number, so $n \neq 0$. The only possible n such that $n^4 + n^2 + 1$ is prime is n=1. In this case we get 1+1+1=3, which is indeed a prime number. So the list consists of only n=1.

(6) (a) Since (A, B) = 1, we know that there exist integers x' and y' such that

$$Ax' + By' = 1.$$

Multiply both sides by C:

$$ACx' + BCy' = C$$
$$Ax + By = C,$$

where x = Cx' and y = Cy'.

(b) We will prove a stronger result (given by David Salwinski on his midterm): if C > AB, then there exist positive integer solutions. From part (a), we know that we can find integers x' and y' such that Ax' + By' = C. Note that

$$Ax' + By' = C > AB,$$

since both A and B are positive. Divide both sides by AB:

$$\frac{x'}{B} + \frac{y'}{A} > 1$$

$$\frac{y'}{A} - (-\frac{x'}{B}) > 1.$$

This implies that the length of the interval $\left(-\frac{x'}{B}, \frac{y'}{A}\right)$ is greater than 1, so there must be an integer K lying in it. Then we get $-\frac{x'}{B} < K$ which gives x' + KB > 0, and $\frac{y'}{A} > K$ which gives y' - KA > 0. Finally, we show that these two positive integers satisfy the given equation:

$$A(x' + KB) + B(y' - KA) = Ax' + KAB + By' - KAB$$

= $Ax' + By' = C$.