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I understand that I am not allowed to use the internet to assist (in any way) with this assignment. I also
understand that I must write down the final version of my assignment in isolation from any other person.
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Problem Set 4
I recommend proceeding in order, as some problems are easier to solve using the results of prior problems.

4.1 (a) Let g be a primitive root (mod p). Prove that

(p− 1)! ≡ g · g2 · g3 · · · gp−1 (mod p)

(b) Use part (a) to prove that (p− 1)! ≡ −1 (mod p).

4.2 Given k ∈ N. Prove that k | ϕ(ak − 1) for all integers a ≥ 2. [Hint: what is the order of a in Z×
ak−1

? ]

4.3 (a) Prove that for every integer k ≥ 0, 52
k ≡ 1 (mod 2k+2) and 52

k 6≡ 1 (mod 2k+3). [Hint: induction! ]

(b) Prove that for any a ≥ 2, the order of 5 in Z×
2a is 2a−2.

(c) Prove that for every n ∈ Z×
2a , there exists an integer k ≥ 0 such that n = ±5k in Z×

2a .

4.4 For any k ∈ N and p prime, prove that

p−1∑
n=1

nk ≡

{
−1 (mod p) if (p− 1) | k
0 (mod p) if (p− 1) - k.

[Hint: use primitive roots. Also, the following identity might be helpful:

(x + x2 + x3 + · · ·+ xm−1)(1− x) = x− xm.]

4.5 Suppose p is prime. Prove that the sequence nn is periodic in Zp. What is its (smallest) period? [Hint: by
experimenting, make a conjecture about the period, then try to prove it.]

4.6 Consider the decimal expansion of 1/p, where p ≥ 7 is prime. For example,

1/7 = 0.142857

Here, the overline indicates that the pattern of digits underneath repeats indefinitely:

0.142857 = 0.142857142857142857 . . .

(a) Suppose p ≥ 7 is prime. Prove that the decimal expansion of 1/p is periodic (and hence, that the decimal
doesn’t terminate). What is the period? [I strongly urge you to build up intuition by calculating (by hand!)
the decimal expansion of 1/p for a few primes. Using a calculator won’t help you in this exercise, since you’re
trying to understand the output (as opposed to simply obtaining it).]

(b) Suppose that the period is even, say, 1/p = 0.a1a2 · · · a2k. Prove that ai + ak+i = 9 for all i. [Hint: prove
that 10k ≡ −1 (mod p).]
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