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Département de mathématiques et de statistique, Université de Montréal
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Abstract. Given any real number α, Dirichlet proved that there are in-
finitely many reduced fractions a/q such that |α− a/q| ≤ q−2. Can we get
closer to α than that? For certain “quadratic irrationals” such as α =

√
2

the answer is no. However, Khinchin proved that if we exclude such thin
sets of numbers, then we can do much better. More precisely, let (∆q)

∞
q=1

be a sequence of error terms such that q2∆q decreases. Khinchin showed
that if the series

∑∞
q=1 q∆q diverges, then almost all α (in the Lebesgue

sense) admit infinitely many reduced rational approximations a/q such
that |α − a/q| ≤ ∆q. Conversely, if the series

∑∞
q=1 q∆q converges, then

almost no real number is well-approximable with the above constraints. In
1941, Duffin and Schaeffer set out to understand what is the most gen-
eral Khinchin-type theorem that is true, i.e., what happens if we remove
the assumption that q2∆q decreases. In particular, they were interested
in choosing sequences (∆q)

∞
q=1 supported on sparse sets of integers. They

came up with a general and simple criterion for the solubility of the in-
equality |α − a/q| ≤ ∆q. In this talk, I will explain the conjecture of
Duffin-Schaeffer as well as the key ideas in recent joint work with James
Maynard that settles it.


