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1. COMPLETION

In number theory, one often deals with incomplete sums, i.e. sums over an unnaturally short
range. One trick which has proved useful is to complete the sum. We will discuss an illustrative
case of this technique.

1.1. Preliminary example. Suppose one wishes to bound the incomplete sum∑
n≤N

χ(n)

n
e(nα)

where χ (mod q) is primitive, N ≤ q, and α ∈ [0, 1). We have∑
n≤N

χ(n)

n
e(nα) =

∑
n≤q

χ(n)

n
e(nα) δ[1,N ](n)

where δS is the characteristic function of the set S. For all n ∈ Z, we have

δ[1,N ](n) =
∑
a≤N

δa(n)

where δa = δ{a}. The trick is now to realize δa in terms of some explicit functions. There are many
ways to do this; for the purposes of this example, a convenient choice is

δa(n) =

∫ 1

0

e(aθ)e(−nθ) dθ.

(Note that this is valid only when a, n ∈ Z!) We find∑
n≤N

χ(n)

n
e(nα) =

∑
n≤q

χ(n)

n
e(nα)

∑
a≤N

∫ 1

0

e(aθ)e(−nθ) dθ

=

∫ 1

0

(∑
n≤q

χ(n)

n
e
(
n(α− θ)

))(∑
a≤N

e(aθ)

)
dθ.

In particular, we have∣∣∣∣∣∑
n≤N

χ(n)

n
e(nα)

∣∣∣∣∣ ≤ max
θ∈[0,1]

∣∣∣∣∣∑
n≤q

χ(n)

n
e(nθ)

∣∣∣∣∣ ·
∫ 1

0

∣∣∣∣∣∑
a≤N

e(aθ)

∣∣∣∣∣ dθ.
Thus we have a bound on the incomplete sum in terms of a complete sum multiplied by a factor
we hope is small. How small is it? The trivial bound gives∫ 1

0

∣∣∣∣∣∑
a≤N

e(aθ)

∣∣∣∣∣ dθ ≤ N
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If one instead applies Cauchy-Schwarz, this bound can be significantly improved:∫ 1

0

∣∣∣∣∣∑
a≤N

e(aθ)

∣∣∣∣∣ dθ ≤
∫ 1

0

∣∣∣∣∣∑
a≤N

e(aθ)

∣∣∣∣∣
2

dθ

1/2

=

( ∑
a1,a2≤N

∫ 1

0

e
(

(a1 − a2)θ
)
dθ

)1/2

=

( ∑
a1,a2≤N

δa1(a2)

)1/2

=
√
N

Finally, if one is much more careful, it is possible (by summing the geometric series, splitting the
integral into intervals of length 1/N , and playing around with geometry) to obtain an asymptotic
for the integral: ∫ 1

0

∣∣∣∣∣∑
a≤N

e(aθ)

∣∣∣∣∣ dθ =
4

π2
logN +O(1).

This yields
1

logN

∣∣∣∣∣∑
n≤N

χ(n)

n
e(nα)

∣∣∣∣∣ ≤
(

4

π2
+ o(1)

)
max
θ∈[0,1]

∣∣∣∣∣∑
n≤q

χ(n)

n
e(nθ)

∣∣∣∣∣ .
1.2. A slight modification. For our intended application, we’ll need to work with a slightly dif-
ferent example: ∑

1≤|n|≤N

χ(n)

n
e(nα)

Running through the same argument as above, we find∑
1≤|n|≤N

χ(n)

n
e(nα) =

∑
1≤|n|≤q

χ(n)

n
e(nα) δ[−N,N ](n)

=

∫ 1

0

 ∑
1≤|n|≤q

χ(n)

n
e
(
n(α− θ)

)DN(θ) dθ

where DN(θ) is the Dirichlet kernel:

DN(θ) =
∑
|n|≤N

e(nθ).

Note that DN(θ) is always real-valued and satisfies
∫ 1

0

DN(θ) dθ = 1. This looks promising, but

unfortunately it is not quite this integral we need to be small:∣∣∣∣∣∣
∑

1≤|n|≤N

χ(n)

n
e(nα)

∣∣∣∣∣∣ ≤ max
θ∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤N

χ(n)

n
e(nθ)

∣∣∣∣∣∣ ·
∫ 1

0

|DN(θ)| dθ
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It is a good exercise to determine the size of
∫ 1

0

|DN(θ)| dθ.

1.3. Smoothing. To further improve this method, we introduce an auxiliary technique called
smoothing. We illustrate how this is done using the same example as above.

Suppose φ(x) is a nice, smooth function, to be explicitly chosen later. Using the same approach
(and the same representation of δa) as above, we find∑

1≤|n|≤N

χ(n)

n
e(nα)φ(n) =

∑
1≤|n|≤q

χ(n)

n
e(nα)

∑
|a|≤N

φ(a)

∫ 1

0

e(aθ)e(−nθ) dθ

=

∫ 1

0

 ∑
1≤|n|≤q

χ(n)

n
e
(
n(α− θ)

)ΦN(θ) dθ

where
ΦN(θ) =

∑
|a|≤N

φ(a)e(aθ).

It follows that∣∣∣∣∣∣
∑

1≤|n|≤N

χ(n)

n
e(nα)φ(n)

∣∣∣∣∣∣ ≤ max
θ∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)

n
e(nθ)

∣∣∣∣∣∣ ·
∫ 1

0

|ΦN(θ)| dθ.

What do we win by this? Well, if we could choose φ(n) so that on one hand,∑
1≤|n|≤N

χ(n)

n
e(nα)φ(n) ≈

∑
1≤|n|≤N

χ(n)

n
e(nα),

while on the other hand |ΦN(θ)| has small mass, we would have a strong bound. Fortunately for
us, Fejér cleverly constructed precisely such a function, the Fejér kernel, defined

ΦN(θ) =
∑
|a|≤N

(
1− |a|

N

)
e(aθ).

It can be shown1 that this is real, non-negative, and has unit mass:∫ 1

0

|ΦN(θ)| dθ =

∫ 1

0

ΦN(θ) dθ = 1.

Moreover, it is easily seen that∑
1≤|n|≤N

χ(n)

n
e(nα)

(
1− |n|

N

)
=

∑
1≤|n|≤N

χ(n)

n
e(nα) +O(1).

We have therefore proved:

1To this end, it is useful to note the following identities:

ΦN (θ) =
1

N

sin2 πNθ

sin2 πθ
=

1

N

∑
n≤N

Dn−1(θ)

where Dj is the the Dirichlet kernel discussed above.
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Lemma 1. Let χ (mod q) be any Dirichlet character. Then

max
θ∈[0,1]
N≤q

∣∣∣∣∣∣
∑

1≤|n|≤N

χ(n)

n
e(nθ)

∣∣∣∣∣∣ = max
θ∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)

n
e(nθ)

∣∣∣∣∣∣+O(1)

2. PALEY’S CONSTRUCTION

Below, the parity of characters will play an important role; we hope to avoid future confusion
with a word of caution right away. Recall that a character χ is said to be even if χ(−1) = 1, and
odd if χ(−1) = −1. This is somewhat unfortunate nomenclature, since any odd character has even
order (and equivalently, any character of odd order is even). Note that the converse does not hold.

Given a primitive character χ (mod q), recall Pólya’s fourier expansion:

Sχ(t) :=
∑
n≤t

χ(n) =
τ(χ)

2πi

∑
1≤|n|≤q

χ(n)

n

(
1− e

(
− nt

q

))
+O(log q)

Here as usual τ(χ) denotes the Gauss sum, and e(x) := e2πix. It follows that for any primitive
even character,

Sχ(t) =
τ(χ)

π

∑
n≤q

χ(n)

n
sin

2πnt

q
+O(log q).

In particular, we see that for any primitive even character

M(χ) := max
t≤q
|Sχ(t)| � √q max

θ∈[0,1)

∣∣∣∣∣∑
n≤q

χ(n)

n
sin 2πnθ

∣∣∣∣∣+O(log q).

It follows from Lemma 1 that for any even character χ (mod q),

max
θ∈[0,1)
N≤q

∣∣∣∣∣∑
n≤N

χ(n)

n
sin 2πnθ

∣∣∣∣∣ ≤ max
θ∈[0,1]

∣∣∣∣∣∑
n≤q

χ(n)

n
sin 2πnθ

∣∣∣∣∣+O(1).

Using quadratic reciprocity and the Chinese Remainder Theorem, Paley constructs an infinite
family X of primitive, even, real characters, such that for each χ (mod q) ∈ X there exists Nχ ≤ q
with

(1) χ(p) = χ−4(p) for all primes p ≤ Nχ, and
(2) q ≤ 1 + 4

∏
p≤Nχ

p.
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It follows that for any χ (mod q) ∈ X ,

M(χ)� √q max
θ∈[0,1)
N≤q

∣∣∣∣∣∑
n≤N

χ(n)

n
sin 2πnθ

∣∣∣∣∣+O(
√
q)

≥ √q

∣∣∣∣∣∣
∑
n≤Nχ

χ(n)

n
sin

πn

2

∣∣∣∣∣∣+O(
√
q)

=
√
q
∑
n≤Nχ

χ−4(n)2

n
+O(

√
q)

� √q logNχ

� √q log log q.
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