
ARE SUBGROUPS OF PRIME INDEX NORMAL?

LEO GOLDMAKHER

1. INTRODUCTION

A classical result in group theory is that any subgroup of index 2 must be normal. But what about subgroups
of a more general index? Such questions play a role in applications, e.g. to solvability of groups of prime-power
order.

Even the case of general prime index isn’t as straightforward as one might guess. For example, one1 might
be tempted to conjecture that if H ≤ G has prime index, then H must be a normal subgroup of G. This is not
the case:

Example 1. Let D8 denote the dihedral group of order 8. A copy of D8 sits inside S4 and has index 3; however,
D8 6C S4. (Exercise!)

However, if we impose additional conditions on the index, we can prove normality. Here’s a famous example
of this. Let P−(n) denote the smallest prime factor of n.

Proposition 1.1. Suppose H ≤ G and |G/H| = P−(|G|). Then H C G.

We give two proofs of this result. In both, let p := P−(|G|).

Proof 1 (via group actions). The natural action of G on G/H by left multiplication induces a homomorphism
ϕ : G→ Sp. I claim that ker ϕ = H . (This will conclude the proof, since ker ϕ C G.)

First observe that ker ϕ ≤ H ≤ G, so it suffices to prove that |G/ker ϕ| = p. Since G/ker ϕ embeds in Sp it
has order dividing p!. But also, the order of G/ker ϕ divides |G|. These two conditions force |G/ker ϕ| = p.

�

Remark. This proof seems to be folklore – if anyone knows a reference, I’d be grateful!

Proof 2 (via induction on |G|). In order to induct on |G|, we’d like to produce a subgroup K ≤ H with
|H/K| = p. But how do we find such a K? The key observation in this proof is that one can take K to
be the intersection of any two subgroups which satisfy the hypotheses of Proposition 1.1.

First note that if H happens to be the only subgroup of index p in G, then the proof is already over (since in
this case H is fixed under conjugation, hence must be normal). Thus we may assume G has two subgroups H
and H ′, both of index p in G. Let

K := H ∩H ′,

and observe that

|HH ′| = |H||H
′|

|K|
. (∗)

(This is most easily seen by applying the first isomorphism theorem to the map H ×H ′ → G defined by
(x, y) 7→ xy.) I claim that K is our desired subgroup of index p in H , and that HH ′ = G. Indeed, (∗) gives

1 < |H/K| ≤ |G/H ′| = p,

while Lagrange’s theorem implies |H/K|
∣∣∣ |G|. Since p is the smallest nontrivial divisor of |G|, we immedi-

ately deduce that
|H/K| = p = |H ′/K|.
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Combining this with (∗) shows that
HH ′ = G.

By induction we know that K C H and K C H ′, whence K C HH ′ = G. Moreover, |G/K| = p2, whence the
group G/K must be abelian. (Exercise!) Thus every subgroup of G/K is normal; in particular, H/K C G/K.
The fourth isomorphism theorem now implies that H C G. �

Remark. I learned this proof thanks to a post by Tobias Kildetoft on math stackexchange.

2. LAM’S THEOREM

In view of Example 1 and Proposition 1.1, it’s natural to wonder about sufficient conditions on |G/H| to
guarantee that H C G. In 2004, T. Y. Lam (On Subgroups of Prime Index, Amer. Math. Monthly) discovered
a lovely elementary proof of Proposition 1.1 which has the added benefit of producing a more general result.

Proposition 2.1. Given H ≤ G, set n := |G/H|. Consider the following statements:
(1) If g 6∈ H , then gk ∈ H for some k ∈ N satisfying P−(k) ≥ n.
(2) If g 6∈ H , then g2, g3, . . . , gn−1 6∈ H .
(3) If g 6∈ H , then gn ∈ H .

Then (1) =⇒ (2) =⇒ H C G =⇒ (3).

Exercise 1. Note that if n is prime, then (3) =⇒ (1) and the above proposition becomes the equivalence of all
three assertions with the normality of H in G. We explore this special case of the proposition in this exercise.

(a) Prove that Proposition 2.1 implies Proposition 1.1. (Your proof should be very short.)
(b) Use Proposition 2.1 to give a very short proof that (the embedding of) D8 isn’t normal in S4.
(c) Use Proposition 2.1 to give a very short proof that (the embedding of) Z2 × Z2 is normal in A4.

Proof of Proposition 2.1. We only prove that (2) =⇒ H C G, leaving the other implications as exercises.
Assume (2) holds. It suffices to show that xHx−1 ⊆ H for all x ∈ G. This is automatically true for x ∈ H , so
we henceforth assume x 6∈ H .

Pick any g ∈ (xHx−1) \ H . Thus (2) implies H, gH, . . . , gn−1H are pairwise disjoint. Moreover, since
|G/H| = n, this is a complete list of cosets, i.e.

G/H =
⊔

0≤`≤n−1

g`H.

It follows that xH = giH for some i ≤ n − 1. Since x 6∈ H by hypothesis, i 6= 0. But now observe that
gxH = xH = giH , whence

giH = xH = gi−1H.

This is impossible, which means that we couldn’t have picked g the way we wanted to, i.e. that xHx−1 ⊆ H .
Since x is arbitrary, we conclude that H C G. �

Exercise 2. When n is composite, the assertions of Proposition 2.1 aren’t equivalent. We explore this here.
(a) Construct H C G such that both assertions (1) and (2) fail to hold.
(b) Construct H 6C G for which assertion (3) holds.
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