ARE SUBGROUPS OF PRIME INDEX NORMAL?

LEO GOLDMAKHER

1. INTRODUCTION

A classical result in group theory is that any subgroup of index 2 must be normal. But what about subgroups of a more general index? Such questions play a role in applications, e.g. to solvability of groups of prime-power order.

Even the case of general prime index isn’t as straightforward as one might guess. For example, one might be tempted to conjecture that if \(H \leq G \) has prime index, then \(H \) must be a normal subgroup of \(G \). This is not the case:

Example 1. Let \(D_8 \) denote the dihedral group of order 8. A copy of \(D_8 \) sits inside \(S_4 \) and has index 3; however, \(D_8 \not\triangleleft S_4 \). (Exercise!)

However, if we impose additional conditions on the index, we can prove normality. Here’s a famous example of this. Let \(P^- (n) \) denote the smallest prime factor of \(n \).

Proposition 1.1. Suppose \(H \leq G \) and \(|G/H| = P^-(|G|) \). Then \(H \triangleleft G \).

We give two proofs of this result. In both, let \(p := P^-(|G|) \).

Proof 1 (via group actions). The natural action of \(G \) on \(G/H \) by left multiplication induces a homomorphism \(\varphi : G \to S_p \). I claim that \(\ker \varphi = H \). (This will conclude the proof, since \(\ker \varphi \triangleleft G \).)

First observe that \(\ker \varphi \leq H \leq G \), so it suffices to prove that \(|G/\ker \varphi| = p \). Since \(G/\ker \varphi \) embeds in \(S_p \), it has order dividing \(p! \). But also, the order of \(G/\ker \varphi \) divides \(|G| \). These two conditions force \(|G/\ker \varphi| = p \).

Remark. This proof seems to be folklore – if anyone knows a reference, I’d be grateful!

Proof 2 (via induction on \(|G| \)). In order to induct on \(|G| \), we’d like to produce a subgroup \(K \leq H \) with \(|H/K| = p \). But how do we find such a \(K \)? The key observation in this proof is that one can take \(K \) to be the intersection of any two subgroups which satisfy the hypotheses of Proposition 1.1.

First note that if \(H \) happens to be the only subgroup of index \(p \) in \(G \), then the proof is already over (since in this case \(H \) is fixed under conjugation, hence must be normal). Thus we may assume \(G \) has two subgroups \(H \) and \(H' \), both of index \(p \) in \(G \). Let

\[
K := H \cap H',
\]

and observe that

\[
|HH'| = \frac{|H||H'|}{|K|}.
\]

(This is most easily seen by applying the first isomorphism theorem to the map \(H \times H' \to G \) defined by \((x, y) \mapsto xy \).) I claim that \(K \) is our desired subgroup of index \(p \) in \(H \), and that \(HH' = G \). Indeed, \((*) \) gives

\[
1 < |H/K| \leq |G/H'| = p,
\]

while Lagrange’s theorem implies \(|H/K| \mid |G| \). Since \(p \) is the smallest nontrivial divisor of \(|G| \), we immediately deduce that

\[
|H/K| = p = |H'/K|.
\]

Date: May 24, 2018.

1The author.
Combining this with (\ast) shows that
\[HH' = G. \]
By induction we know that \(K \triangleleft H \) and \(K \triangleleft H' \), whence \(K \triangleleft HH' = G \). Moreover, \(|G/K| = p^2 \), whence the group \(G/K \) must be abelian. (Exercise!) Thus every subgroup of \(G/K \) is normal; in particular, \(H/K \triangleleft G/K \).
The fourth isomorphism theorem now implies that \(H \triangleleft G \).
\[\square \]

Remark. I learned this proof thanks to a post by Tobias Kildetoft on math stackexchange.

2. Lam’s theorem

In view of Example 1 and Proposition 1.1, it’s natural to wonder about sufficient conditions on \(|G/H| \) to guarantee that \(H \triangleleft G \). In 2004, T. Y. Lam (On Subgroups of Prime Index, Amer. Math. Monthly) discovered a lovely elementary proof of Proposition 1.1 which has the added benefit of producing a more general result.

Proposition 2.1. Given \(H \leq G \), set \(n := |G/H| \). Consider the following statements:

1. If \(g \notin H \), then \(g^k \in H \) for some \(k \in \mathbb{N} \) satisfying \(P^-(k) \geq n \).
2. If \(g \notin H \), then \(g^2, g^3, \ldots, g^{n-1} \notin H \).
3. If \(g \notin H \), then \(g^n \in H \).

Then \((1) \implies (2) \implies H \triangleleft G \implies (3) \).

Exercise 1. Note that if \(n \) is prime, then \((3) \implies (1) \) and the above proposition becomes the equivalence of all three assertions with the normality of \(H \) in \(G \). We explore this special case of the proposition in this exercise.

(a) Prove that Proposition 2.1 implies Proposition 1.1. (Your proof should be very short.)

(b) Use Proposition 2.1 to give a very short proof that (the embedding of) \(D_8 \) isn’t normal in \(S_4 \).

(c) Use Proposition 2.1 to give a very short proof that (the embedding of) \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) is normal in \(A_4 \).

Proof of Proposition 2.1. We only prove that \((2) \implies H \triangleleft G \), leaving the other implications as exercises. Assume (2) holds. It suffices to show that \(xHx^{-1} \subseteq H \) for all \(x \in G \). This is automatically true for \(x \in H \), so we henceforth assume \(x \notin H \).

Pick any \(g \in (xHx^{-1}) \setminus H \). Thus (2) implies \(H, gH, \ldots, g^{n-1}H \) are pairwise disjoint. Moreover, since \(|G/H| = n \), this is a complete list of cosets, i.e.
\[G/H = \bigsqcup_{0 \leq \ell \leq n-1} g^\ell H. \]
It follows that \(xH = g^i H \) for some \(i \leq n - 1 \). Since \(x \notin H \) by hypothesis, \(i \neq 0 \). But now observe that \(gxH = xH = g^iH \), whence
\[g^iH = xH = g^{i-1}H. \]
This is impossible, which means that we couldn’t have picked \(g \) the way we wanted to, i.e. that \(xHx^{-1} \subseteq H \). Since \(x \) is arbitrary, we conclude that \(H \triangleleft G \).
\[\square \]

Exercise 2. When \(n \) is composite, the assertions of Proposition 2.1 aren’t equivalent. We explore this here.

(a) Construct \(H \triangleleft G \) such that both assertions (1) and (2) fail to hold.

(b) Construct \(H \ntriangleleft G \) for which assertion (3) holds.