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The Football
Player
The air buzzed
with anticipation
as the football
team crowded
excitedly into the
lecture hall. The
country’s top
halfback was
about to defend
his Ph.D. thesis in

mathematics! It
soon became ap-

parent that the pro-
ceedings were a mere

formality, as the candi-
date’s dissertation on

summability methods for di-
vergent Dirichlet series was a

masterful piece of work.
This scenario is no fantasy from a 1990s television

sitcom; it is a true story. The place was Copenhagen,
the year was 1910, and the sport was “football” as the
word is understood internationally (“soccer” in Amer-
ican lingo). The star halfback played in the 1908
Olympics on Denmark’s silver-medal football team,
a team that is still in the record books [21, p. 172] for
the most goals scored in a single game. (Denmark de-
feated France by the lopsided score of 17 to 1.) The
dissertation title was Contributions to the Theory of
Dirichlet Series (well, actually Bidrag til de Dirich-
let’ske Rækkers Theori), and the candidate’s name
was Harald Bohr.

(Devotees of American football remember Frank
Ryan, who wrote his Ph.D. dissertation [23, 24] on
geometric function theory while quarterback for
the Cleveland Browns, champions of the National
Football League at the time. But that’s another
story [18, 22].)

Among mathematicians, Harald Bohr is best re-
membered today for his theory of almost periodic
functions [10]; students of complex analysis also
know him for the Bohr-Mollerup theorem (see, for
example, [3, Theorem 2.1], [12, §§274–275]) that
characterizes the Γ function on the positive real axis
as the unique positive, logarithmically convex func-
tion f such that f (x + 1) = xf (x) for all x and
f (1) = 1. In his native land Bohr’s early fame as a
sports hero and his subsequent prominence as a
distinguished academician were eclipsed by his
status as the kid brother of Niels Bohr. Brother
Niels, a prime architect of modern atomic theory
and recipient of the Nobel prize for physics in
1922, was Denmark’s most honored citizen dur-
ing his lifetime.

The Infinite Series
Like many others before and after him, Harald
Bohr wanted to decide the truth or falsity of the
Riemann hypothesis, one of the most famous un-
solved problems of mathematics. Bohr was un-
successful, but much of his mathematical work was
motivated by trying to understand the Riemann
zeta-function ζ:

ζ(s) =
∞∑
n=1

1
ns
, Re s > 1.

It is easy to see that the infinite series on the right-
hand side converges absolutely in the half-plane
where the real part of the complex variable s ex-
ceeds 1, for |1/ns| = 1/nRe s, and 

∑∞
n=1 1/nx con-

verges when x > 1. On the other hand, there is no
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larger open half-plane where the series converges
(even conditionally), because when s = 1 the series
reduces to the divergent harmonic series.

It is a natural idea to try to understand the Rie-
mann ζ-function by studying the more general
Dirichlet series of the form 

∑∞
n=1 an/ns, the coef-

ficients an being complex constants. (These are or-
dinary Dirichlet series; for a wider class see, for
example, [2, 16].) A simple example of a Dirichlet
series is 

∑∞
n=1(−1)n+1/ns , which is the ζ-function

series with alternating signs. Evidently this series
converges absolutely in exactly the same half-
plane as the ζ-function series does: Re s > 1.

However, this new series converges condition-
ally (but not absolutely) in the larger half-plane
where Re s > 0. The convergence follows from the
Abel-Dirichlet-Dedekind generalization of the al-
ternating series test (see, for example, [15, §143],
[20, §5.5]), which implies that if {bn} is a sequence
tending to 0 and of bounded variation (meaning
that 

∑
n |bn − bn+1| converges), then 

∑
n(−1)nbn

converges. The sequence {1/ns} has bounded vari-
ation when Re s > 0 since |1/ns − 1/(n + 1)s| =
O(1/n1=Re s ) .

This phenomenon of conditional convergence
is contrary to our experience with ordinary power
series 

∑∞
n=1 cnzn, for a power series converges ab-

solutely at all points of its open disk of conver-
gence. A Dirichlet series can converge nonab-
solutely (that is, conditionally) in a vertical strip,
and the above example shows that the width of
such a strip can be as large as 1. The width of the
strip of conditional, nonabsolute convergence can-
not, however, exceed 1. Indeed, if the Dirichlet se-
ries 

∑∞
n=1 an/ns converges for a certain s , then the

individual terms tend to 0 and in particular are
bounded in absolute value by some constant M;
now if z is a complex number such that
Re z > 1 + Re s ,  then 

∑∞
n=1 |an/nz| ≤

M
∑∞
n=1 1/nRe (z−s) <∞ .

Incidentally, the series 
∑∞
n=1(−1)n+1/ns is

closely related to the ζ-function. When Re s > 1,
we can rearrange the terms of the absolutely con-
vergent series however we like, so by separating
the sum over odd integers from the sum over even
integers, we find that

∞∑
n=1

(−1)n+1

ns
=

∞∑
n=1

1
ns
− 2

∞∑
k=1

1
(2k)s

= ζ(s)(1− 21−s ).

Thus, the function (1− 21−s )−1∑∞
n=1(−1)n+1/ns

serves to extend the definition of the ζ-function
from the half-plane where Re s > 1 to the half-
plane where Re s > 0. Bohr observed in [6] that one
way to extend the ζ-function to the whole plane
is to take iterated Cesàro averages of the series∑∞
n=1(−1)n+1/ns , thereby producing equivalent se-

ries that converge in progressively larger half-
planes. The famous Riemann hypothesis can be for-

mulated as the statement that the zeroes of the func-
tion 

∑∞
n=1(−1)n+1/ns in the right half-plane all lie on

the vertical line where Re s = 1/2 (aside from trivial
zeroes where 1− s is a nonzero integral multiple of
2πi/ log 2). 

The Question
What about uniform convergence of Dirichlet series?
An ordinary power series converges uniformly on
each closed disk inside its open disk of convergence,
but this gives no hint about what might be true for
Dirichlet series (as we have already seen in the case
of conditional convergence).

Since |1/ns| does not depend on the imaginary part
of s , it is clear that if a Dirichlet series 

∑∞
n=1 an/ns

converges absolutely in a half-plane where Re s > A,
then it converges uniformly in each closed half-plane
{s : Re s ≥ A + ε}, where ε can be any positive num-
ber. Having just seen that there may be an abscissa
C to the left of A such that the series converges con-
ditionally when Re s > C, we might anticipate that
there is an intermediate abscissa B, as indicated in
Figure 1, such that the Dirichlet series converges uni-
formly in each closed half-plane {s : Re s ≥ B + ε},
where ε > 0. Harald Bohr introduced this notion of a
line of uniform convergence in [7].

In [8, p. 446] Bohr asked, What is the maximal pos-
sible width A− B of the vertical strip of uniform, but
not absolute, convergence of a Dirichlet series? We saw
above that A− C ≤ 1, so certainly A− B cannot ex-
ceed 1. It turns out that A− B cannot exceed 1/2, and
this value is sharp.

Although Bohr knew that A− B ≤ 1/2, he could not
produce a single example of a Dirichlet series for
which A− B > 0. In a companion paper [26] in the
same volume, Otto Toeplitz gave examples showing
that the upper cutoff for A− B is no smaller than 1/4.
It was nearly two decades later that H. F. Bohnenblust
and Einar Hille finally proved 1/2 to be the right
value in an article [5] that Henry Helson, comment-
ing in a collection of Hille’s papers, termed “a re-

Figure 1. Convergence regions for Dirichlet series.
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markable piece of work” [19, p. 664]. The result was
rediscovered by Seán Dineen and Richard M. Timo-
ney more than half a century later [14], with a new
proof based on the relationship [13] between nu-
clearity and the existence of absolute bases in certain
locally convex spaces.

My aim here is to make the theorem accessible to
a wide audience by presenting a relatively elementary
proof using only methods that have existed in text-
book form since I was in high school. (I hesitate to
call the methods “classical”, however. The technique
of random polynomials discussed below was not
available to Bohr.) My attention was directed to this
theorem by Henry Helson when I lectured at Berke-
ley about some joint work with Dmitry Khavinson [4]
concerning another problem of Bohr.

The Upper Bound
Suppose that a Dirichlet series 

∑∞
n=1 an/ns converges

uniformly on a vertical line where Re s = b. I claim that
if ε is an arbitrary positive number, then the series
converges absolutely when Re s ≥ b + ε + 1/2; that
is, 
∑∞
n=1 |an|/nb+ε+1/2 <∞. In other words, the width

A− B is no larger than 1/2.
Observe that by the Cauchy-Schwarz inequality,∑∞
n=1 |an|/nb+ε+1/2 is at most (

∑∞
n=1 |an|2/n2b)1/2

×(
∑∞
n=1 1/n1+2ε)1/2. Since 

∑∞
n=1 1/n1+2ε converges,

the claim will follow if I show that 
∑∞
n=1 |an|2/n2b

converges.
Since each finite partial sum 

∑N
n=1 an/ns is

bounded on the line where Re s = b, and since (by hy-
pothesis) the partial sums converge uniformly on
this line, the partial sums must be uniformly bounded
on the line, say by a constant M. Then for every pos-
itive integer N and every real number t we have the
inequality

M2 ≥
∣∣∣∣∣
N∑
n=1

an
nb+it

∣∣∣∣∣
2

=
N∑
n=1

|an|2
n2b + 2Re

∑
1≤n<m≤N

anam
(nm)b(n/m)it

.

Taking the average value with respect to t by inte-
grating from −T to T and dividing by 2T , we find that

M2 ≥
N∑
n=1

|an|2
n2b

+ 2Re
∑

1≤n<m≤N

anam
(nm)b

sin(T log(m/n))
T log(m/n)

.

Taking the limit as T →∞ shows that
M2 ≥∑Nn=1 |an|2/n2b. Since N is arbitrary, this means
that 

∑∞
n=1 |an|2/n2b does converge.

This confirms that the maximal width A− B of
the strip of uniform but not absolute convergence
of a Dirichlet series is at most 1/2. Next I want to
show that the cutoff value for this width is no
smaller than 1/2.

The Lower Bound
I will construct a Dirichlet series 

∑∞
n=1 an/ns that

converges uniformly in every half-plane
{s : Re s ≥ δ + 1

2}, where δ > 0, but that does not
converge absolutely when Re s < 1. This example
demonstrates that no number smaller than 1/2 will
serve as a cutoff for the maximal width of the
strip of uniform nonabsolute convergence of
Dirichlet series.

Tools
The construction uses off-the-shelf technology: el-
ementary counting, the prime number theorem,
and the theory of random Fourier series. There is
enough slack in the method that I do not need par-
ticularly sharp implementations of these tools.
The theory of analytic functions of an infinite
number of variables, central to Harald Bohr’s ap-
proach, is hiding in the background, but I shall not
need to make explicit reference to it.

Nonetheless, the philosophy of the construction
is very much that of Bohr. Namely, I choose to
view an object such as 1/45s, not as the recipro-
cal of a power of an integer, but as the value of the
monomial z2

1z2 when z1 = 1/3s and z2 = 1/5s .
Thus, the problem becomes separated from num-
ber theory and turns into a problem about poly-
nomials.
The prime number theorem
The most familiar version of the prime number the-
orem says that the number of primes less than x
is asymptotic to x/ logx when x→∞ . An equiva-
lent statement is that if the prime numbers are
arranged in increasing order (p1 = 2, p2 = 3,
p3 = 5, and so on), then the size of the nth prime
pn is asymptotic to n logn. I need only the weaker
statement that there is a constant c1 such that
1/c1 < pn/(n logn) < c1 when n > 1; this is rather
easier to prove than the full-blown prime number
theorem (see, for example, [1, §4.5]).
Counting monomials
I need simple bounds on the number of monomi-
als of degree m in n variables: objects of the form
zα1

1 zα2
2 . . . zαnn , where the αj are nonnegative inte-

gers whose sum is m. Viewing such a monomial
as a product of m nontrivial factors, where there
are n choices for each factor, gives a count of nm,
but this count is too big, since it takes account of
the order of the terms. No particular product of
terms has more than m! rearrangements, and
some products have fewer rearrangements, so
nm/m! is an undercount. Thus the number of dis-
tinct monomials of degree m in n variables is be-
tween nm/m! and nm. It is easy to show that the
precise count is the binomial coefficient 

(
n+m−1
m

)
,

but I shall not need this exact value.
Random polynomials
Consider a homogeneous polynomial of degree m
in n complex variables with coefficients ±1, that
is, an object of the form
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∑
α1+α2+···+αn=m

±zα1
1 zα2

2 . . . zαnn .

To avoid trivialities, I assume that m and n are both
at least 2. What can be said about the supremum
of the modulus of such a polynomial when every
coordinate zj lies in the unit disk? Since each term
has modulus at most 1, the maximum modulus is
certainly no more than the total number of terms,
which according to the preceding paragraph is
less than nm. On the other hand, the maximum
modulus is at least as big as the root mean square
average on the torus where each variable has mod-
ulus 1; by orthogonality, this average equals the
square-root of the total number of terms and thus
exceeds nm/2/

√
m! (again, by the count in the pre-

ceding paragraph). What will be significant below
is the exponent of n.

It turns out that typically the maximum modu-
lus of such a polynomial is nearly as small as it can
be. According to the theory of random trigono-
metric polynomials (see, for example, [17, Theorem
4 of Chapter 6]) there is a constant c2 such that if
the ± signs are assigned at random, then with
high probability the maximum modulus of the re-
sulting polynomial is less than c2n(m+1)/2√ logm .
Although there consequently are many polynomi-
als satisfying this bound, all I need is the exis-
tence of one for each m and n.
The Construction
I will construct a Dirichlet series 

∑∞
n=1 an/ns for

which every coefficient an is either 0, +1, or −1,
and I will show that for every positive δ this Dirich-
let series converges uniformly when Re s ≥ δ + 1

2,
yet the series does not converge absolutely when
Re s < 1.

I construct the terms of the series in groups. To
build the kth group (starting with k = 2), choose
a random homogeneous polynomial of degree k
in 2k variables with coefficients ±1 (as described
above). List the 2k consecutive prime numbers
starting with the 2kth prime, and for each such
prime p substitute 1/ps for the corresponding
variable in the polynomial. This converts the sum
of monomials ±zα1

1 zα2
2 . . . z

α2k

2k into a sum of terms
±1/ns, where each integer n is the product of ex-
actly k primes (counting repeated factors with
their multiplicities) from the block of 2k primes
starting at the 2kth prime. The uniqueness of
prime factorization implies that no integer n ap-
pears more than once.

For every integer n not arising in the above
process, I set an = 0. The first integer n for which
an 6= 0 is 49, for this is the smallest integer that
is the product of two primes taken from the set of
22 consecutive primes starting with p4 = 7.

Now I verify that the constructed Dirichlet se-
ries has the required properties. First consider the
question of absolute convergence of 

∑∞
n=49 an/ns.

The counting argument above implies that the

number of integers n formed from products of k
primes in the block from the 2kth prime to the 2k+1th
prime exceeds 2k

2/kk. By the prime number theorem
the 2k+1th prime is bounded above by 3c1k2k, so
such integers n are bounded above by (3c1k)k2k

2
.

Hence 
∑∞
n=49 |an/ns| exceeds∑∞

k=2 2k
2(1−Re s) /(3c1k)k(1+Re s). Evidently the latter

sum diverges when Re s < 1, so our Dirichlet series
fails to converge absolutely when Re s < 1. (On the
other hand, since the coefficients an are bounded, it
is evident that our Dirichlet series does converge ab-
solutely when Re s > 1.)

Next consider the question of uniform conver-
gence of our Dirichlet series. I wish to estimate the
modulus of the sum of the terms in the kth block.
This piece of the Dirichlet series equals the value of
our random polynomial when we substitute for each
variable the reciprocal of the corresponding prime
number raised to the power s . Since the polynomial
is homogeneous of degree k, the supremum of its
modulus when the variables have modulus at most
|1/ps| is 1/pkRe s times the bound c22k(k+1)/2√ logk
coming from the paragraph “Random polynomials”.
Since the 2kth prime is bounded below by k2k/2c1,
this chunk of the Dirichlet series is bounded above
by c22k(k+1)/2√ logk/(k2k/2c1)kRe s. The Weierstrass
M-test and the root test now imply that the series of
blocks converges uniformly when Re s ≥ 1/2.

The proof is now finished modulo a technical (but
nontrivial) point. I have showed that the constructed
Dirichlet series converges uniformly for Re s ≥ 1/2
if the series is summed in appropriate blocks; how-
ever, I need to show that the Dirichlet series con-
verges uniformly when summed in its natural order,
without grouping. (That there truly is something to
check here is indicated already by the alternating ver-
sion of the ζ-function series 

∑∞
n=1(−1)n+1/ns , which

when s = 0 converges if summed by pairs of terms,
yet diverges when summed in the ordinary way.) The
convergence we need follows from a general lemma,
essentially due to Bohr [9, Hilfssatz 2].

Lemma. Suppose that a Dirichlet series 
∑∞
n=1 bn/ns

converges absolutely when Re s > a and that the an-
alytic function f (s) which it represents continues an-
alytically to the half-plane where Re s > c .  If
c < b < a, and if f is bounded on the half-plane where
Re s ≥ b , then for every positive δ the Dirichlet se-
ries converges uniformly on the half-plane where
Re s ≥ b + δ.

In our situation the series summed in blocks con-
verges uniformly in the closed half-plane where
Re s ≥ 1

2 to a bounded function f that is analytic in
the open half-plane. When Re s > 1, this function f
does equal the sum of the Dirichlet series (summed
in any order, since in that region the series converges
absolutely). Consequently, the lemma implies that
the Dirichlet series converges uniformly to f in each
half-plane where Re s ≥ δ + 1

2.
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Proof of the Lemma
The lemma follows from a technique that Bohr at-
tributed to his contemporary W. Schnee, who wrote
his dissertation in Berlin in 1908 under the influence
(although not the formal tutelage) of the famous Ed-
mund Landau. Soon after receiving his master’s de-
gree in 1909 Bohr himself began a collaboration with
Landau, who had just been appointed Minkowski’s suc-
cessor at the University of Göttingen. In his reminis-
cences [11, p. xxvi] Bohr remarked on Landau’s un-
excelled zeal:

When Landau and I thought that an oral
conference on our work was needed, I
caught the train to Göttingen for a few
days’ stay. No one could be in such an ex-
cellent mood for work as Landau, and his
speed and perseverance were sometimes
quite breathtaking. In order to show me at
once that the time had come for serious
work, he had instituted the tradition of
ringing the bell immediately, as soon as I
had arrived at his house after the long and
somewhat tiring journey and had set foot
inside his study, and of requesting the en-
tering maid to inform the kitchen that
“tonight at 2 AM a very strong cup of cof-
fee is to be served to both of us.”

The idea of the proof is easier to describe than to
implement: integrate over a vertical contour, and use
Cauchy’s integral formula to push the contour to the
right into the region where the Dirichlet series is al-
ready known to converge uniformly. The technique
is still the standard one employed to derive Perron’s
formula for the partial sums of Dirichlet series (see,
for example, [1, §11.12], [25, §9.42]). This shows that
contour integration remains useful, even though sym-
bolic computation software packages such as Math-
ematica and Maple can now calculate all the real in-
tegrals that are given in complex analysis textbooks
as the main applications of contour integration.

To begin the proof, let K denote an upper bound
for f in the half-plane where Re s ≥ b , and fix a pos-
itive δ (which we may as well assume is less than 1).
I aim to show that if Re s ≥ b + δ ,  then
|f (s)−∑Mn=1 bn/ns| is bounded by a constant times
M−δ logM, where the constant depends on K and δ
but is independent of s and M. Consequently, the
Dirichlet series will converge uniformly to f in the half-
plane where Re s ≥ b + δ, as claimed.

Viewing s and M as fixed for the moment, with
Re s ≥ b + δ ,  consider integrating
f (z)(M + 1

2 )z−s/(z − s) as a function of z around the
rectangular contour shown in Figure 2 with vertices
at s − δ− iMa−b+2 , s + a− b − iMa−b+2 ,
s + a− b + iMa−b+2, and s − δ + iMa−b+2. By Cauchy’s
integral formula this integral equals 2πif (s) . The in-
tegral over the left-hand edge of the rectangle has
modulus bounded by KM−δ ∫Ma−b+2

−Ma−b+2 (δ2 + y2)−1/2 dy,
and hence by a constant (depending on δ and K)

times M−δ logM. The integrals over the top and

bottom edges of the rectangle are each bounded

by

KM−(a−b+2)
∫ a−b+Re s

−δ+Re s
(M + 1

2 )x−Re s dx,

and hence by a constant times M−2. Consequently,

2πif (s) differs by O(M−δ logM) from the integral

over the right-hand edge of the rectangle.

Since the right-hand edge of the contour is in

the region where the Dirichlet series is known to

converge uniformly to f, we may replace f (z) by∑∞
n=1 bn/nz in the remaining integral and inter-

change the order of summation and integration.

We now have that 2πif (s) differs from

(1)
∞∑
n=1

bn
ns

∫ s+a−b+iMa−b+2

s+a−b−iMa−b+2

M + 1
2

n

z−s 1
z − s dz

by O(M−δ logM). To evaluate the integrals in this

sum, we must distinguish between the cases

n ≥M + 1 and n ≤M.

When n ≥M + 1, build a new rectangular con-

tour whose left-hand edge is the given vertical line

segment with abscissa a− b + Re s and whose

right-hand edge has very large abscissa. The inte-

grand has no singularities inside this contour, so

the integral over the left-hand side equals the neg-

ative of the sum of the integrals over the other three

sides. Since ((M + 1
2 )/n)z−s is decaying exponen-

tially when Re z becomes large, we may push the

right-hand edge of the contour off to +∞. The in-

tegrals over the top and bottom sides are each

bounded by M−(a−b+2)
∫∞
a−b((M + 1

2 )/n)x dx. Hence

the terms for which n ≥M + 1 make a total con-

tribution to the sum in (1) not exceeding twice

Figure 2. Integration contour.

boas.qxp  10/17/97 2:46 PM  Page 1434



DECEMBER 1997 NOTICES OF THE AMS 1435

∑
n≥M+1

|bn|
nRe s M

−(a−b+2)

M + 1
2

n

a−b

×
∣∣∣∣∣∣log

M + 1
2

n

∣∣∣∣∣∣
−1

.

Observe that | log(M + 1
2 )/n| is smallest when

(M + 1
2 )/n is closest to 1, which happens when

n =M + 1. In this case, the absolute value of the
logarithm is

− log
2M + 1
2M + 2

=

− log
(

1− 1
2M + 2

)
>

1
2M + 2

.

Since the series 
∑∞
n=1 |bn|/na−b+Re s is uniformly

bounded above by 
∑∞
n=1 |bn|/na+δ , which con-

verges by hypothesis, it follows that the terms in
(1) with n ≥M + 1 have a sum bounded by a con-
stant times 1/M.

For the terms with n ≤M, we may similarly
build a rectangular contour whose right-end edge
is the vertical line with abscissa a− b + Re s and
which extends to the left toward −∞. The integral
over this contour picks up a contribution 2πi
from the simple pole at z = s with residue 1, while
the integrals over the top and bottom edges admit
estimates analogous to the previous case. Conse-
quently, ∣∣∣∣∣f (s)−

M∑
n=1

bn
ns

∣∣∣∣∣ = O(M−δ logM)

uniformly with respect to s when Re s ≥ b + δ.
This completes the proof of the lemma.

Envoi
We have seen an example of a Dirichlet series f (s)
whose strip of uniform, but not absolute, conver-
gence attains the maximal possible width of 1/2.
On the other hand, for the Riemann zeta function
ζ, the width of this strip is 0. Bohnenblust and Hille
went to some trouble in [5, pp. 618–620] to demon-
strate that if λ is any real number between 0 and
1/2, then there is a Dirichlet series whose strip of
uniform, nonabsolute convergence has width pre-
cisely λ. Harald Bohr [5, p. 622 footnote] cut
through this problem with a knife: the Dirichlet se-
ries for f (s) + ζ(s + λ) does the job.
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