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1. THE GAMMA FUNCTION

In this chapter we’ll explore some of the strange and wond@roperties of the Gamma function
I'(s), defined by

Fors > 0 (or actuallyR(s) > 0), theGamma function I'(s) is

['(s) :/ e "2* tdx :/ e‘””d—$.
0 0 x

There are countless integrals or functions we can definélahlsng at it, there is nothing to make
you think it will appear throughout probability and statist but it does. We’'ll see where it occurs
and why, and discuss many of its most important properties.

1.1. Existence ofl'(s). Looking at the definition of'(s), it's natural to ask:Why do we have re-
strictions ons? Whenever you are given an integrand, you must make sure élisaghaved before
you can conclude the integral exists. Frequently therevanettouble points to check, near= 0
and nearr = 4oo (okay, three points). For example, consider the funcfi¢n) = z~'/2 on the
interval [0, oo). This function blows up at the origin, but only mildly. Itstégral is2z'/2, and this is
integrable near the origin. This just means that

1

lim 1 2dg
e—0 c

exists and is finite. Unfortunately, even though this fumeiis tending to zero, it approaches zero so
slowly for largex that it is not integrable of0, co). The problem is that integrals such as

B

lim x V2dx
B—oo 1

is infinite. Can the reverse problem happen, namely our foimctecays fast enough for largebut
blows up too rapidly for smalt? Sure — the following is a standard, albeit initially strarigoking,

example. Consider
L if x>0
) = zlog? x
/@) {O otherwise.

1
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Our function has a nice integral:

1 1
/ s—dr = /(logm)”;dm = /(logm)_2dlogx = —(logz)™t.

xlog” x

We check the two limits:

) B da ) 1 )
lim 5— = lim [ — = — lim =
B—oo 1 x log €T B—oo log €T ) B—oo lOg B

What about the second limit? We have
. 1
. 1 . 1 1
lim 5 dr = lim | — = lim— = —©
e—0 J. x log T e—0 10g x e—0 10g €

(to see the last, writeas1/n and sench — o).

So it’s possible for a positive function to fail to be integiabecause it decays too slowly for large
x, or it blows up too rapidly for smalt. As a rule of thumb, if ag — oo a function is decaying
faster than /2! *< for any epsilon, then the integral at infinity will be finiteoFsmallz, if asz — 0

the function is blowing up slower thatt!*< then the integral at O will be okay near zero. You should
always do tests like this, and get a sense for when thingewist and be well-defined.

Returning to the Gamma function, let's make sure it's welfioed for anys > 0. The integrand
is e *2°7l. Asx — oo, the factorz*~! is growing polynomially but the terma—? is decaying
exponentlally, and thus their product decays rapidly. Ifvamt to be a bit more careful and rigorous,
we can argue as follows: choose some intéger s + 1701 (we put in a large number to alert you

to the fact that the actual value of our number does not matie clearly have* > z*/M!, as
this is just one term in the Taylor series expansior“fThuse=* < M!/2™, and the integral for
largex is finite and well-behaved, as it's bounded by

B
/e_xxs_ldx < /M'xM81dx
1

_ / M /

= 2

s—M
1

B M! 1 1

 s—M |BM-s '
It was very reasonable to try this. We know ttfegrows very rapidly, s@~* decays quickly. We
need to borrow some of the decay frent to handle the:*~! piece.

What about the other issue, neas= 0? Well, near: = 0 the functione* is bounded; it’s largest
value is whenr = 0 soitis at most 1. Thus

1 1
/ e Tl < / 1-2° Yz
0 0

1
1
S

S

S

0

We've shown everything is fine for > 0; what if s < 0? Could these values be permissible
as well? The same type of argument as above shows that theer@aroblems when is large.
Unfortunately, it's a different story for small. Forz < 1 we clearly havee™ > 1/e. Thus our
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integrand is at least as large#s' /e. If s < 0, thisis no longer integrable df, 1]. For definiteness,
let's dos = —2 Then we have

o0 o0 1
/ e Tx3dy > / — 7 3dx
0 o €

and this blows up.

The arguments above can (and should!) be used every time getian integral. Even though our
analysis hasn’t suggested a reason why anyone wearglabout the Gamma function, we at least
know that it is well-defined and exists for all> 0. In the next section we’ll show how to make
sense of Gamma for all values ef This should be a bit alarming — we've just spent this section
talking about being careful and making sure we only use nategvhere they are well-defined, and
now we want to talk about putting in values suchsas —3/2? Obviously, whatever we do, it won't
be anything as simple as just plugging- —3/2 into the formula.

If you're interested]'(—3/2) = 4,/7/3 — we’ll prove this soon!

1.2. The Functional Equation of I'(s). We turn to one of the most important propertylgf). In
fact, this property allows us to make sensenj value ofs as input, such as the= —3/2 of the
last section. Obviously this can’'t mean just naively throgvin anys in the definition, though many
good mathematicians have accidentally done so. What weirgggo see is the thAnalytic (or
Meromorphic) Continuation .. The gist of this is that we can take a functipthat makes sense in
one region and extend its definition to a functipdefined on a larger region in such a way that our
new functiong agrees withf where they are both defined, buis defined for more points.

The following absurdity is a great example. What is

1+2+4+8+ 16+ 32 +64 + -7

Well, we're adding all the powers of 2, thus it’s clearly zeright? Wrong — the “natural” meaning
for this sum is—1! A sum of infinitely many positive terms is negative? Whatsrg on here?

This example comes from something you've probably seen riargs, the geometric series. If
we take the sum

L+r 4+ +r7+rt+0° 4+ 0%+
then,so long agr| < 1, the sum is jus%. There are many ways to see tiDD REF TO THE
SHOOTING GAME . The most common, as well as one of the most boring, is to let

Sp = 1+r+-- 41"
If we look atS,, — r.S,,, almost all the terms cancels; we're left with
S, —rS, = 1—r"

We factor the left hand side &% — r)S,,, and then dividing both sides ly— r gives

1 — 7’”+1
S, = ——
1—r
If || < 1thenlim,_,,, ™ = 0, and thus taking limits gives
- 1 —pntt 1
Zrm = lim S, = lim ! = .
— n—00 n—oo | —7 1—7r

This is known as thgeometric series formula and is used in a variety of problems.
Let’s rewrite the above. The summation notation is nice amdgact, but that's not what we want
right now — we want to really see what's going on. We have

1
L+r+r+r+r+ 0"+ 0% 4.0 = T <t
- T
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Note the left hand side makes sense only|for< 1, but the right hand side makes sensedtr
values ofr other than 1! We say the right hand side is an analytic coation of the left, with a pole
ats = 1 (poles are where our functions blow-up).

Let’s define the function

flx) = 1+ 2+ 2> +2° + 2"+ 2° + 2% + -,

For|z| < 1 we also have
1

1—xa

flz) =

And now the big question: what j&2)? If we use the second definition, it’sjui% = —1, while if
we use the first definition its that strange sum of all the peveé2. THISis the sense in which we
mean the sum of all the powers of 2 is -1. We do not mean pluggirgfor the series expansion;
instead, we evaluate the extended function at 2.

It's now time to apply these techniques to the Gamma functiwe’ll show, using integration by
parts, that Gamma can be extended forsalor at least for alls except the negative integers and
zero). Before doing the general case, let’s do a few reptates examples to see why integration
by parts is such a good thing to do. Recall

['(s) :/ e " ¥ dr, s> 0.
0

The easiest value afto take iss = 1, as then the:*~! term becomes the harmleg$ = 1. In this
case, we have

o0

= —-0+1=1

i = / e fdr = —e "
0 0

Building on our success, what is the next easiest valud@take? A little experimentation suggests
we try s = 2. This will makez*~! equalz, a nice, integer power. We find

I'(2) :/ e “xdx.
0

Now we can begin to see why integration by parts will play sachmportant role. If we let. = x
anddv = e~ *dx, thendu = dx andv = —e™*, then we’ll see great progress — we start with needing
to integratere™* and after integration by parts we’re left with having to«dd, a wonderful savings.
Putting in the details, we find

— / vdu
0

0
+/ e “dx.
0 0
The boundary term vanishes (it's clearly zero at zero; ustopital to evaluate it ato, giving
lim, o0 25 = lim, o0 ei = 0), while the other integral is just(1). We've thus shown that
['(2) = I(1);

however, it is more enlightening to write this in a slightlyferent way. We took: = x and then
saiddu = dz; let's write it asu = z' anddu = 1dz. This leads us to

r(2) = 10(1).

At this point you should be skeptical — does it really matténything times 1 is just itself! It
does matter. If we were to calculdié3), we would find it equal®I’(2), and if we then progressed
toI'(4) we would see it’s jusBI'(3). This pattern suggesi¥s + 1) = sI'(s), which we now prove.

I'2) = w

= —ge©




We have
I's+1) = / e Tty = / e "xtdx.
0 0

We now integrate by parts. Laet= z* anddv = e~*; we're basically forced to do it this way as”
has a nice integral, and by setting= x* when we differentiate the power of our polynomial goes
down, leading to a simpler integral. We thus have

—T

uw=2% du = sz* ldx, dv = e %dx, v = —e %,

which gives

['(s+1) = —z%"

= 0+s/ e “a¥dr = sT(s),
0

completing the proof. This relation is so important its wagolating it, and giving it a name.

Functional equation of I'(s): The Gamma function satisfies
L(s+1) = sI(s).
This allows us to extend the Gamma function to all We call the

extension the Gamma function as well, and it is well-definadifanite
for all s save the negative integers and zero.

Let’s return to the example from the previous section. Late'll prove thatl’(1/2) = /7. For
now we assume we know this, and show how we can figure outIihad/2) should be. From the
functional equationl’(s + 1) = sI'(s). We can rewrite this a(s) = s~'T'(s + 1), and we can now
use this to ‘walk up’ froms = —3/2, where we don’t know the value, to= 1/2, where we assume
we do. We have

() - 5r(D) - Feor(l) -4

This is the power of the functional equation — it allows usedirte the Gamma function essentially
everywhere, so long as we know its valuesdor 0. Why are zero and the negative integers special?

Well, let’s look atI'(0):
I'(0) :/ e "’ dx :/ e "z dx.
0 0

The problem is that this is not integrable. While it decayyvapidly for largex, for smallx it looks
like 1/z. The details are:

1 1
1 d
lim ez~ 'dr > ~lim & —limlogx

= lim —loge = oo.
e—0 c e e—0 ¢ T e e—0 e—0

€

ThusI'(0) is undefined, and hence by the functional equation it is atstefined for all the negative
integers.

1.3. The Factorial Function and I'(s). In the last section we showed thags) satisfies the func-
tional equatio’(s+1) = sI'(s). Thisis reminiscent of a relation obeyed by a better knowcfion,
the factorial function. Remember

nl=n-n—-1)-n—-2)---3-2-1;
we write this in a more suggestive way as

n! =n-(n—1"L
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Note how similar this looks to the relationship satisfiedl§y). It's not a coincidence — the Gamma
function is a generalization of the factorial function!

We've shown thal'(1) = 1, I'(2) = 1, I'(3) = 2, and so on. We can interpret this B&) =
(n—1)!'forn € {1, 2, 3}; however, applying the functional equation allows us t@sexgtthis equality
to all n. We proceed by induction. Proofs by induction have two stépes base case (where you
show it holds in some special instance) and the inductie (st@ere you assume it holds farand
then show that implies it holds faor + 1).

We've already done the base case, as we've chetked= 0!. We checked a few more cases
then we needed to. Typically that’s a good strategy whenglwiductive proofs. By getting your
hands dirty and working out a few cases in detail, you ofteérageetter sense of what's going on,
and you can see the pattern. Remember, we initially wir¢2¢ = I'(1), but after some thought (as
well as years of experience) we rewrote iffld8) = 1 - I'(1).

We now turn to the inductive step. We assuiije) = (n —1)!, and we must show(n + 1) = n!.
From the functional equatiori;(n + 1) = nI'(n); but by the inductive step'(n) = (n — 1)!.
Combining gived'(n + 1) = n(n — 1)!, which is just(n + 1)!, or what we needed to show. This
completes the proof. O

We now have two different ways to calculate say 1020!. TheiBrto do the multiplications out:
1020 - 1019 - 1018 - - -. The second is to look at the corresponding integral:

1020! = T'(1021) = / e “ g,
0

There are advantages to both methods; we wanted to discoss afothe benefits of the integral
approach, as this is definitely not what most people have $e&gration is hard; most people don’t
see it until late in high school or college. We all know how taltiply numbers — we’be been doing
this since grade school. Thus, why make our lives difficultcbpverting a simple multiplication
problem to an integral?

The reason is a general principle of mathematics — often bkimhg at things in a different way,
from a higher level, new features emerge that you can expgsb, once we write it as an integral we
have a lot more tools in our arsenal; we can use results fréegiation theory and from analysis to
study this. We do this in Chapter 2, and see just how much wéeeain about the factorial function
by recasting it as an integral.

1.4. Special Values of'(s). We know that'(n+ 1) = n! whenevenm is a non-negative integer. Are
there choices of that are important, and if so, what are they? In other wor@d/enjust generalized
the factorial function. What was the point? It may be thatribe-integral values are just curiosities
that don't really matter, and the entire point might be toéh#lve tools of calculus and analysis
available to study:!. This, however, is most emphaticaltpt the case. Some of these other values
are very important in probability; in a bit of foreshadowjmge’ll say they play a central role in the
subject.

So, what are the most important Because of the functionahtemjy once we know'(1) we
know the Gamma function at all non-negative integers, whigks us all the factorials. So 1 is an
important choice of. We’'ll now see that = 1/2 is also very important.

One of the most important, if not the most important, disttidn is the normal distribution. We
say X is normally distributed with meap and variancer?, written X ~ N(u, 0?), if the density
function is

1
V2mo?

Looking at this density, we see there are two parts. Thehgskponential part, and the constant

factor of1/v/270?. Because the exponential function decays so rapidly, tegial will be finite and
thus, if appropriately normalized, we will have a probdbpillensity. The hard part is determining
just what this integral is. Another way of formulating thisestion is: Lety(z) = e~@#?/27°  As

it decays rapidly and is never negative, it can be rescaledtégrate to one and hence become a

o (o=p)? /202

fuo(x) =



probability density. That scale factor is justc, where

. / Y a2

In ChapterADD REF we’ll see numerous applications and uses of the normalildiston. It's
not hard to make an argument that it is important, and thuseeeto know the value of this integral.
That said, why is this in the Gamma function chapter?

The reason is that, with a little bit of algebra and some chaofgvariables, we’ll see that this
integral is justy/2I'(1/2). We might as well assume = 0 ando = 1 (if not, then step 1 is just to
change variables and let= =*. So let’s look at

I = / e 2y
= 2/ e 2y,
0

This only vaguely looks related to the Gamma function. Then@a function is the integral of
times a polynomial iz, while here we have the exponential-ef? /2. Looking at this, we see that
there’s a natural change of variable to try to make our irstidgok like the Gamma function at some
special point. We have to try = 22 /2, as this is the only way we’'ll end up with the exponential of
the negative of our variable. We want to fidd in terms ofu anddu for the change of variables,
thus we rewritew = 22/2 asz = (2u)'/?, which givesdz = (2u)~'/2du. Plugging all of these in,
we see

I = 2/ e (2u) "2 du
0

= \/5/ e~ u~ 2 du.
0

We’'re almost done — this does look very close to the Gammaifumahere are just two issues, one
trivial and one minor. The first is that we're using the letitdnstead ofr, but that’s fine as we can

use whatever letter we want for our variable. The secondaisltts) involves a factor of.*~! and
we haveu~'/2. This is easily fixed; we just write

1 1_1_1

1
u_§:u222:u§;

we justadded zerq one of the most useful things to do in mathematics. (It takesile to learn how
to ‘do nothing’ well, which is why we keep pointing this ouThus

I = \/5/C><J e ur'du = V20(1/2).

We did it — we've found another value efthat is important. Now we just need a way to find out
whatI'(1/2) equals! We could of course just go back to the standard n&mehsity and do the
polar coordinate trick (seBDD REF); however, it is possible to evaluate this directly, andtacénm
be gained by doing so. We'll give a few different proofs.

1.4.1. The Cosecant Identity: First ProoBooks have entire chapters on the various identities satis-
fied by the Gamma function. In this section we’ll concentiateone that is particularly well-suited
to our investigation of'(1/2), namely the cosecant identity.

The cosecant identityWWe have

['(s)I'(1—s) = mese(mws) =

™

sin(7s)

Before proving this, let's take a moment, as it really is jagsnoment, to use this to finish our
study. For almost alt the cosecant identity relates two values, Gammaaatd Gamma at — s; if
you know one of these values, you know the other. Unfortupat@s means that in order for this
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identity to be useful, we have to know at least one of the twoas Unless, of course, we make the
veryspecial choice of taking=1/2. As1/2 =1 — 1/2, the two values are the same, and we find

[(1/2)? = [(1/2)T(1/2) = ﬁ

taking square-roots givéd¥1/2) = /7.

In this and the following subsections, we’ll give variousg@fs of the cosecant identity. If all you
care about is using it, you can of course skip this; howe¥egou read on you'll get some insight
as to how people come up with formulas like this, and how thewe them. The arguments will
become involved in places, but we’ll try to point out why we aloing what we’re doing, so that if
you come across a situation like this in the future, a nevasitn where you are the first one looking
at a problem and there is no handy guidebook available, Muave some tools for your studies.

Proof of the cosecant identityWe've seen the cosecant identity is useful; now let’s se@afpHow
should we try to prove this? Well, one siddi&s)I'(1 —s). Both of these numbers can be represented
as integrals. So this quantity is really a double integrahevever you have a double integral, you
should start thinking about changing variables or chantfiegorder of integration, or maybe even
both! The point is using the integral formulations gives ustarting point. This argument might
not work, but it's something to try (and, for many math prabse one of the hardest things is just
figuring out where to begin).

What we are about to write looks like it does what we have detio do, but there’svo subtle
mistakes:

Ls)I'(1—s) = / e Tt - / e Tty
0 0
= / et e T g, (1)
0

Why is this wrong? The first expression is the integral regméstion ofl'(s), the second expression
is the integral representation Bf1 — s), so their product i$'(s)I'(1 — s) and then we just collecting
terms? Unfortunatel\\\O!. The problem is that we used the same dummy variable for nbélyria-
tions. We cannot write it as one integral — we had two integnat each with @z, and then ended up
with just onedz. This is one of the most common mistakes students make. Bysiog a different
letter for the variables in each integration, we accidéntdmbined them and went from a double
integral to a single integral.

We should use two different letters, which in a fit of creatiwie’ll take to bex andy. Then

Ls)h(1—s) = / e_“”xs_ldx-/ e Yyt dy

0 0
o0 o0

= / et e Yy " dady.
y=0 J =0

While the result we're gunning for, the cosecant formulahesutiful and important, even more
important (and far more useful!) is to learn how to attackypems like this. There aren’t that many
options for dealing with a double integral. You can integras$ given, but in this case that would be
a bad idea as we would just get back the product of the Gamnaéidms. What else can we do? We
can switch the orders of integration. Unfortunately, tloatisn’'t any help; switching orders can only
help us if the two variables are mingled in the integral, dmat tsn’t the case now. Here, the two
variables aren’t seeing each other; if we switch the ordentefyration, we haven't really changed
anything. Only one option remains: we need to change vasabl

Thisis the hardest part of the proof. We have to figure out a goodgshaf variables. Let’s look
at the first possible choice. We hav&ly— = (z/y)*"'y~!; perhaps a good change of variables
would be to letu = z/y? If we are to do this, we fiy, and then for fixed; we setu = z/y, giving
du = dzx/y. Thel/y is encouraging, as we had an exjraarlier. This leads to

L(s)[(1—s) = /y:e-y [/:Oe-“yus—ldu} dy.
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Now switching orders of integration is non-trivial, a@ndy appear together. That gives
['(s)'(1—s) = / us! [/ e_(“ﬂ)ydy} du
u=0 y=0
o0 —(ut+1)y |
s—1 €
= d
/uzou u+1 o ] Y

00 1 00 s—1
= / ust dy = / ¢ du.
u=0 U+ 1 u=0 U + 1

Warning: we have to be very careful above, and make sure teechrange is justiiedRemember
earlier in the chapter when we had a long discussion aboutnghertance of making sure an integral

makes sense? The integrand abov%. It has to decay sufficiently rapidly as — oo and it

cannot blow up too quickly as — 0 if the integral is to be finite. If you work out what this entgil
it forcess € (0, 1); if s < 0 then it blows up too rapidly near 0, while4f> 1 it doesn’t decay fast
enough at infinity.

In hindsight, this restriction is not surprising, and intface should have expected it. Why?
Remember earlier in the proof we remarked that there wewemistakes in[(IL); if you were really
alert, you would have noticed we only mentionatk mistake! What is the missing mistake? We
used the integral representation of the Gamma function.t iBhanly valid when the argument is
positive. Thus we neesl > 0 and1 — s > 0; these two inequalities forcec (0, 1). If you didn’t
catch this mistake this time, don’t worry about it; just beaagvof the danger in the future. This
is one of the most common errors made (by both students apdroders). It's so easy to take a
formula that works in some cases and accidentally use it in@pvhere it is not valid.

Alright. For now, let’s restrict ourselves to takinge= (0, 1). We leave it as an exercise to show that
if the relationship holds fog € (0, 1) then it holds for alls. Hint: keep using the functional equation
of the Gamma function. It's easy to see how thers) or thesin(ws) changes if we increaseby
1; the Gamma pieces follow with a bit more work.

Now we really can say

[e%¢) us—l
L(s)I'(1—s) /0 o du. 2
What next? Well, we have two factors;~! and u+r1 Note the second looks like the sum of a
geometric series with ratie . Admittedly, this is not going to be an obvious identificatiat first,
but the more math you do, the more experience you gain andafierat is to recognize patterns.
We know)~> " = -1, so all we have to do is take= —

We must be careful — we’re about to make the same mistake,agairely using a formula where
it isn’t applicable. It's very easy to fall into this trap. Fonately, there’s a way around it. We split
the integral into two parts, the first part is whene [0, 1] and the second whem € [1,00]. In
the second part we’ll then change variables by settirg1/u and do a geometric series expansion
there.Splitting an integral is another useful technique to master. It allows us to breagplicated
problem up into simpler ones, ones where we have more reguis disposal to attack it.

For the second integral, we'll make the change 1/u. This givesdv = —du/u? or du = —v?dv
(sincel/u? = v?), and the bounds of integration go from being 1 — cotowv : 1 — 0 (we'll then
use the negative sign to switch the order of integration ¢éonlore common : 0 — 1). Continuing
onward, we have

1 s—1 oo ,,s—1
P(sT(1—s) = /“ du+/ Y du
0 1

1 us—l 00 0 (1/0)8—1 N
— B - ¥
/0u+1d“+/ / 1/u)+1” v
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Note how similar the two expressions are. We now use the gemnseries formula, and then we’'ll
interchange the integral and the sum. Everything can bédiggsbecauses € (0,1), so all the
integrals exist and are well behaved, giving

I'(s)I'(1—s) = /Ous_lz(—l)"u"du+/o U_SZ(—l)mUmd’U

~ S (- / lus_1+”du+i(—1)m /O oS

n=0 0

o0 o m+ls !
= 2 *Z_O T

n= m= 0
- nZ:O< n—l—s—i—mzzo m

Note we used two different letters for the different sums. ilvVtve could have used the letter
twice, it's a good habit to use different letters. What haypgoeow is that we’ll adjust the counting a
bit to easily combine them.

The two sums look very similar. They both look like a power efyative one divided by either
k + s or k — s. Let's rewrite both sums in terms &f The first sum has one extra term, which we’ll
pull out. In the first sum we’ll set = n, while in the second we'll sét = m+1 (so(—1)" becomes

(—1)*1 = (=1)*1, We get

o0

E k+1
=1

D(sM(1—s) = §+Z(—

JR— L —28
R s

It may not look like it, but we've just finished the proof. Theoplem is recognizing the above is
mese(ms) = w/sin(ws). This is typically proved in a complex analysis course; seéfstanceADD

We can at least see it's reasonable. We're claiming

—_

[oe)
sin(m Z — 52

k=1

V)

If sis an integer therin(7s) = 0 and thus the left hand side is infinite, while exactly one & th
terms on the right hand side blows up. This at least shows mswer is reasonable. Or mostly
reasonable. It seems likely that our sum/sin(7s) for somee, but it isn’t clear that that constant is
w. Fortunately, there’s even a way to get that, but it invokmswing a bit more about certain special
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sums. If we takes = 1/2 then the sum becomes

o0 [e.e]

1 k 1 _ (=1)*
7 2V e = 2 ; R 1/4

k=1
— (—1D)*4
- 2_

1
- 2.4y -
;(%—1)2

Now add something about this — a non-standard formula!

1.4.2. The Cosecant Identity: Second Prodfle already have a proof of the cosecant identity for the
Gamma function —why do we need another? For us, the mainméaeducational. The goal of this
book is not to teach you have to answer one specific problemeatrmment in your life, but rather to
give you the tools to solve a variety of new problems whengwarencounter them. Because of that,
it's worth seeing multiple proofs as different approachepkasize different aspects of the problem,
or generalize better for other questions.

Let’'s go back to the set-up. We had: (0, 1) and

Ls)'1—s) = / e_"”xs_ldx-/ e Yyt dy
0 0
= / / e " e Yy dady.
y=0 J =0

We've already talked about what our options are. We candgrdte it as is, or we'll just get back
the two Gamma functions. We can’t change the order of integraas ther andy variables are not
mingled and thus changing the order of integration won'llyedhange the problem. The only thing
left to do is change variables.

Before we set: = z/y. We were led to this because we saw'y— = (z/y)*"'y~!, and thus it's
not unreasonable to set= = /y. Are there any other ‘good’ choices for a change of variafle€re
is, but it’s not surprising if you don't see it. It's our oldénd, polar coordinates.

It should seem a little strange to use polar coordinates dter all, we use those for problems
with radial and angular symmetry. We use them for integgativer circular regiondNONE of this
is happening here! That said, we think a good case can be roatigihg this.

e First, we don’t know that many change of variables; we do kpalar coordinates, so we
might as well try it.

e Second, we're trying to show the answetrigsc(ms) = 7/ sin(ws). The answer involves the
sine function, so perhaps this suggests we should try potadmates.

At the end of the day, a method either works or it doesn’t. Weehitne above at least motivates

why we’re trying this here, and can provide guidance for yothie future.
Recall for polar coordinates we have the following relasion

x = rcosf, y = rsinf, dxdy = rdrdf.
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What are the bounds of integration? We’re integrating olerupper right quadrant, y : 0 — oc.
In polar coordinates it becomes 0 — oo andé : 0 — «/2. Our integral now becomes

N(s)D(1—s) — / =750 (1 03 )16 50 (1 5in 0)~*rdrdf
6=0 Jr=0

w/2  poo s—1
_ —7(cos 0+sin 6) cos 0
/9 /7« < sin 0 sin 9 drd
w/2 o
_ / cos ¢ 1 / e—r(cos 0+-sin e)dT do
0 sin 6 sinf | J,—
/2 cos 6 -1 1 6—r(cos€+sin€) o0
= . . - . do
9—o \sind sinf | cos@ +sind |,
/2 s—1
_ / C'OS 0 '1 1 __w
o—o \sind sin @ cos 6 4 sin 0

It doesn't look like we've made much progress, but we're s little change of variables away
from a great simplification. Note that a lot of the integramiyadepends omos/ sin = ctanf
(the cotangent of). If we do make the change of variables- ctanf thendu = — csc?§ = 1/ sin”;
if you don’t remember this formula, you can get it by the gentirule:

, cos 0’ cos’ O sin @ — sin’ § cos 6
ctan’(6) = sin 6 - sin?
~ —sin’f—cos?d 1
B sin? @ © sin?6

Now things are looking really promising; our proposed cleafyvariables needsld sin? ¢, and we
already have a/ sin ¢ in the integrand. We get the other by writing

1 1 1 1 1

cosf +sinf sinf (cosf/sinf) +1  sinfctand + 1’

All that remains is to find the bounds of integrationulf= ctanf = cosf/sin 6, thenf : 0 — 7/2
corresponds ta : co — 0 (don’t worry that we're integrating from infinity to zero — weave a
minus sign floating around, and that will flip the order of gration).

Putting all the pieces together, we find

™2 ctan®~'0  df
I'(s)I'(1 — =
(5)0(1 =) /9:0 ctanf + 1 sin? @

0 s—1 oo ,.5—1
= / “ (—du) = / Y.
u=co U + 1 0 u+ 1

This integral should look familiar — it is exactly the integjive saw in the previous section, in
equation[(R). Thus from here onward we can just follow thpsta that section.

A lot of students freeze when they first see a difficult mattbfm. Why varies from student to
student, but a common refrain isl didn’t know where to start. For those who feel that way, this
should be comforting. There are (at least!) two differerarae of variables we can do, both leading
to a solution for the problem. As you continue in math yougesagain and again that there are many
different approaches you can take. Don’t be afraid to tryesthing. Work with it for awhile and see
how it goes. If it isn’t promising you can always backtrackiary something else.

1.4.3. The Cosecant Identity: Special Case- 1/2. While obviously we would like to prove the
cosecant formula for arbitrary the most important choice of is clearlys = 1/2. We need’(1/2)

in order to write down the density functions for normal dlsitions. Thus, while it would be nice to
have a formula for any, it's still cause for celebration if we can handle just 1/2.
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Remember in(2) that we showed

00 us—l
L)1 —s) = /0 = du.
Takings = 1/2 gives
oo, —1/2
T(1/2)? = / Y .
0o 14w

We're going to solve this with a highly non-obvious changevafiable. Let’s state it first, see how
it works, and then discuss why this is a reasonable thingjtdHere it is: takeu = 22, S0z = u!/?

anddz = du/2+/u. Note how beautifully this fits with our integral. We havea/2du term already,
which become&dz. Substituting gives

r(1/2? = / ﬂzgf _dz
o 1+22 o 1422

Looking at this integral, you should think of the trigonomesubstitutions from calculus. Whenever
you seel — z? you should tryz = sin  or z = cos #; when you seé + 22 you should tryz = tan.
Let’s make this change of variables. The reason it’s so ligefhe Pythagorean formula

sin®@ + cos?6 = 1

becomes, on dividing both sides bys? 9,

= sec?d.

tan?60 4+ 1 =
cos? @

Letting z = tan § means we replacke+ 22 with sec? 0. Furtherdz = sec? 0d# (if you don’t remember

this, just use the quotient rulean § = sin 6/ cosf). Asz : 0 — oo, we have) : 0 — 7/2. Collecting
everything gives

sec? 0db

w/2
2
r(1/2? = 2/0 —

w/2
:2/ a9 = 25 — 1
; 2

and ifI"(1/2)? = w thenl'(1/2) = /7 as claimed!

And there we have it: a correct, elementary proof fhdt/2) = /7. You should be able to follow
the proof line by line, but that’'s not the point of mathemsitidhe point is tseewhy the author is
choosing to do these steps so taht you too could create aljtediis.

There were two changes of variables. The first was replacimgth =2, and the second was
replacingz with tané. The two changes are related. How can anyone be expectedhtodh
these? To be honest, when writing this chapter one of us hadrtsult their notes from teaching
a similar course several years ago. We remembered that santehgents came into the problem,
but couldn’t remember the exact trick we thought of so long.al§'s not easy. It takes time, but
the more you do, the more patterns you can detect. We have a in the denominator; we know
how to handle terms such ast 22 through trig substitution. As the cosecant identity inashtrig
functions, that suggests this could be a fruitful avenuexpdage. It's not a guarantee, but we might
as well try it and see where it leads.
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Flush with our success, the most natural thing to try nextla@se substitutions for general If
we do this, we would find

00228—2
I'(s)I'(1 — = —— 22d
Ora-s = [

oo 2s—1
= 2/ : dz
0 1"‘ 22

w/2 tan2s—! 0
= 2/ ani? sec? 0d6
0 sec? 6

w/2
= 2/ tan®~! 6d6.
0

We now see how special = 1/2 is. For this, and only for this, value does the integrandagse
to just being the constant function 1, which is easily inéégd. Any other choice of forces us to
have to find integrals of powers of the tangent function, Whecno easy task! Formulas do exist;
for example,

/tan 0dg = % [ — 2arctan (1 — v2Vv/tan 9) + 2arctan (1 +v/2vtan 0)

+ log (1 — ﬂ\/m%—tané) — log <1+\/§\/ta79+tan€>].

1.5. The Beta Function and the Gamma Function. The Beta function is defined by
1
B(a,b) = / Y1 =) dt, a,b > 0.
0

This is a very slight resemblance with the Gamma functiorth avolve the integration variable
raised to a parameter minus 1. It turns out this is not justrectence or a stretch of the imagination,
but rather these two functions are intimately connected by:

Fundamental Relation of the Beta Function:Fora, b > 0 we have
' ['(a)I(b)
B(a,b) == [ "Y1 —t)ldt = ——=.
@b = [ ey F
With a little bit of algebra, we can rearrange the above ardl fin

Tla+b) ' . oNb=lgp 7.
7F(a)F(b)/0t (1—t)ldt = 1;

this means that we've discovered a new density, the deniibedeta distribution:

; { Dlath) ga—1(] — $)b=1gt if0<t <1
ab —

T'(a)T'(b)
0 otherwise.

We'll discuss this distribution in greater detail ADD REF. For now we’ll just say briefly that it's
an important family of densities as a lot of times our inputesween 0 and 1, and the two parameters
a andb give us a lot of freedom in creating ‘one-hump’ distribusamamely densities that go up
and then go down). We plot several of these densities in Eigur

1.5.1. Proof of the Fundamental RelatioWVe prove the fundamental relation of the Beta function.
While this is an important result, remember that our purposioing so is to help you see how to
attack problems like this. Multiplying both sides bya + b), we see that we must prove

['(a)I'(b), F(a+b)/01t“‘1(1—t)b‘1dt
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FIGURE 1. Plots of Beta densities fdu, b) equal to (2, 2), (2, 4), (4, 2), (3, 10), and
(10, 30).

are equal. There are two ways to do this; we can either work thié product of the Gamma
functions, or expand thE(a + b) term and combine it with the other integral.

Let’s try working with the product of the Gamma functions. tBléhat we can use the integral
representation freely, as we've assunaedl > 0. Note how different this is than the last section,
where we had to restrict to € (0,1). Anyway, we’'ll argue along the lines of our first proof of the
cosecant identity, and we find

C(a)T(b) = /0 e_:”xa_ldx/ e Yyt ldy

0
_ / / 6_(x+y)l’a_1yb_1dl’dy.
y=0 J =0

Remember, we can’'t change the order of integration, as tbattwgain us anything as the two
variables are not mixed. Our only remaining option is to geamariables. We've fixeg and are
integrating with respect to. Let’s try x = yu Sodxz = ydu; we've seen changes of variables like
this helped in the previous section, and this will at least things up. We find

Cre) = [ ety ay

=0

=0
_ / / ya+b—1ua—16—(1+u)ydudy
y=0 Ju=0

_ / / ya-i-b—lua—le—(l-l-u)ydydu‘
u=0 Jy=0

We've changed variables and then switched the order ofratieg. So right now we're fixing:
and then integrating with respect go For « fixed, consider the change of variables- (1 + u)y.
This is a good choice, and a somewhat reasonable one to trynedt to get d'(a + b) arising
somehow. For that, we want something like the exponentiti®hegative of one of our variables.
Right now we have~(+%¥ which isn't of the desired form. By letting= (1 + u)y, however, it
now becomes™*. Again, what drives this change of variables is trying togg@nething looking like
I'(a + b); note how useful it is to have a sense of what the answer is!
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Anyway, if t = (1 + u)y thendy = dt/(1 + u) and our integral becomes

00 oo ¢ a+b—1 1
[(a)l = et~ dtd
(a)T'(b) /u:O/t:O<1+u) u' e T a tdu
00 a—1 b—1 0o
_ / ( Y ) < ! ) [ / e_tt”b_ldt} du
u=0 \1 +u I+u =0
0o u a—1 1 b—1
(@t )/u:o<1+u) <1+u) “

where we used the definition of the Gamma function to replaee-integral withI'(a 4 b). We're
definitely making progress — we've found théu + b) factor.

We should also comment on how we wrote the algebra above. Yibioed everything that was
to thea — 1 power together, and what was left was to bhel power. Again, this is a promising sign;
we're trying to show that this equal¥a + b) times an integral involving®—! and(1 — z)*~?; it's
not exactly this, but it is close. (You might be a bit worribatwe have &+ 1 and nota — 1 —it'll
work out after yet another change of variables). So, lookinghat we have and again comparlng it

with where we want to go, what's the next change of Varlabl.BEﬂ”:S tryr = ,,s0l —7 = 1+—u
anddr = (1+u Tha? (by the quotient rule), odu = (1 + u)?dr = —)2. Sinceu : 0 — oo, 7: 0 — 1.
Thus
r@re = raty [ 0o
a = a ; T T (1 — 7_)2

1
= F(a+b)/ 7971 — 7)) dr,
0

which is what we needed to show!

As always, after going through a long proof we should stopispaand think about what we did
and why. There were several change of variables and an liatege of orders of integration. As
we've already discussed why these changes of variablegasemable, we won’t rehash that here.
Instead, we’ll talk one more time about how useful it is to wnihe answer. If you can guess the
answer somehow, that can provide great insight as to whab.toF@r this problem, knowing we
wanted to find a factor of (a + b) helped us make the change of variables to fix the exponential.
And knowmg we wanted factors like a variable to the 1 power suggested the change of variables

T = —l—u'

1.5.2. The Fundamental Relation arit{1/2). We give yet another derivation @f(1/2), this time
using properties of the Beta function. Taking- b = 1/2 gives

1 1 o1\ [t
r({=|I(-= — (4= 1/2-1(1 _ p\1/2-1y
()r() - rGe) [reo-oea
1
= F(l)/ 21 —t)" V2t
0

As always, the question becomes: what's the right changewéies? If we think back to our
studies of the Gamma function, we have /2)? was supposed to be/ sin(r/2). This is telling us
that trig functions should play a big role, so perhaps we waadb something to facilitate using trig

functions or trig substitution. If so, one possibility istaket = »2. This makes the factdd —¢)~'/2
equal to(1 — »2)~%/2, which is ideally suited for a trig substitution.

Now for the details. We sét= u? or u = t'/2, sodu = dt/2t'/? or t~'/2dt = 2du; we write it
like this as we have & /2dt already! The bounds of integration are still 0 to 1, and weehav

1\’ L
r (-) = / (1 —u?)~Y22du.
2 0
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We now use trig substitution. Take= sin 6, du = cos#df, andu : 0 — 1 become®) : 0 — 7/2
(we choseu = sin f overu = cos 6 as this way the bounds of integration becobre 7 /2 and not
7/2 to 0, though of course either approach is fine). We now have

1 2 w/2
r (5) = 2/ (1 —sin? )2 cos Bdf
0
B 2/”/2 cos 0df
B o (cos?0)1/2

w/2
— 2/ a0 =2.2 — x
; 2

which gives us yet another way to se@ /2) = /7.

2. STIRLING'S FORMULA

It is possible to look at probabilities without seeing fadts, but you have to do a lot of work to
avoid them. Remember that is the product of the first positive integers, with the convention that
0! =1. Thus3!=3-2-1=6and4! =4 - 3! = 24. There is a nice combinatorial interpretation:
is the number of ways to arrangepeople in a line when order matters (there arehoices for the
first person, them — 1 for the second, and so on). With this point of view, we intetpt = 1 as
meaning there is just one way to do arrange nothing!

Factorials arise everywhere, sometimes in an obvious nmamuesometimes in a hidden one. The

first instance of factorials encountered in probability igwvhe binomial coefficienti,’,;”) = ﬁlk),
Remember this is the number of ways to chobsdjects fromn when order does not matter.
There are, however, less obvious occurrences of the fatforction. Perhaps the best hidden

one occurs in the density function of the standard norrg%l,exp(—x?/Q). It turns out that,/7 =

(—1/2)!. You should be hearing alarm bells upon reading this; aftewa’ve defined the factorial
function for integer input, and now we are taking the faetipmot just of a negative number, but of
a negative rational! What does this mean? How do we intethesfactorial of—1/2? What does it
mean to ask about the number of ways of order -1/2 people?

The answer to this is through the Gamma functiofs,), where

['(s) :/ e "2 tdx, R(s) > 0.
0

Some authors write this as

There is no difference in the two expressions, though thely thfferent. Writingdz/x emphasizes
how nicely the measure transforms under rescaling: if wel seto v = ax for any fixeda, then
dzr/x = du/u.
It turns out the Gamma function generalizes the factoriatfion: if n is a non-negative integer
thenl'(n + 1) = n!. We described this and other properties of the Gamma fumaiiéDD REF.
The purpose of this chapter is to describe Stirling’s forafor approximating:! for largen, and
discuss some applications. The key fact is
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Stirling’s formula : Asn — oo, we have

n

n! =~ n"e "vV2mn;

by this we mean

|
lm — & — 1.

n—00 ne=N\/2mn

More precisely, we have the following series expansion:

1 1 139
n!l = n"e™"V2mn (1 + + — . ) )

12n ' 288n2  51840n3

Whenever you see a formula, you should always try some sitepts to see if it is reasonable.
What kind of tests can we apply? Well, Stirling’s formulaioia thatn! ~ n"e "v2mn. As
n! = n(n—1)---1, clearlyn! < n™, which is consistent with Stirling though it is too large by
approximately:—". What about a lower bound? Well, clearly > n(n —1) - - - 5 (we’ll assumen /2

is even for convenience), sd > (n,/2)"/2. While this is a lower bound, it is a poor one; it looks

like n"/227/2; the power of should ber and notn/2 according to Stirling. There’s a bit of an art
to finding good, elementary upper and lower bounds. This i®eeradvanced topic and requires a
‘feel’ for how to proceed; nevertheless, it's a great slalidevelop. So as not to interrupt the flow,
we'll hold off on these more elementary bounds for now, and tita8P.5/to show you how close
one can get to Stirling just by knowing how to count.

What other checks can we do? Wéh,+ 1)!/n! = n + 1; let's see what Stirling gives:

(n+1)! (n+1)"e D 27(n + 1)
n! B nte="\/2mn

= (n+1)- <nzl)n%\/”nﬁ
ey

Asn — oo, (14 1/n)" — e (this is the definition ot; seeADD REF) andy/1 + 1/n — 1; thus
our approximation above is basically + 1) - e - é -1, which isn + 1 as needed for consistency!

While the arguments above are not proofs, they are almostlaable. It is essential to be able
to look at a formula and get a feel for what it is saying, andwbether or not it is true. By some
simple inspection, we can get upper and lower bounds thalwgah Stirling’s formula. Moreover,
Stirling’s formula is consistent witfin 4+ 1)! = (n + 1)n!. This gives us reason to believe we're on
the right track, especially when we see how close our rat®tva + 1.

A full proof of Stirling’s formula is beyond the scope of a ficourse in probability. The purpose
of this chapter is to give several arguments supportinghi, discuss some of its applications. Our
hope is that the time spent on these arguments will give yaitaisense of what’s going on.

2.1. Stirling’s Formula and Probabilities. Before getting bogged down in the technical details of
the proofs of Stirling’s formula, let’s first spend some timeeing how it can be used. Our first
problem is inspired by a phenomenon that surprises mangstsidimagine we have a fair coin, so
it lands on heads half the time and tails half the time. If weifl2n times, we expect to get heads;
thus if we flip it two million times we expect one million headl turns out that as — oo, the
probability of gettingexactlyn heads irn tosses of the fair coin tends to zero!

This result can seem quite startling. The expected value fo tosses is: heads, and the prob-
ability of gettingn heads tends to zero? What's going on? If this is the expectlee yshouldn't it
be very likely! The key to understanding this problem is teenihat while the expected valueris

heads irn tosses, the standard deviationj:/2; returning to the case of two million tosses, we
expect one million heads with fluctuations of the size 700nadv we tossed the coin two trillion
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times, we would expect one trillion heads and fluctuationghenorder of 700,000. As increases,
the ‘window’ about the mean where outcomes are likely is gngvlike the standard deviation, i.e.,

it is growing like v/N (up to some constants). Thus the probability is being shanedng more
and more values, and thus it makes sense that the prolegbditindividual, specific outcomes (like
exactlyn tosses) is going down. In summary: the probability of exactheads irkn tosses is going
down as the probability is being spread over a wider and waderWe now use Stirling’s formula to
guantify just how rapidly this probability decays.

For largen, we can painlessly approximatéwith Stirling’s formula. Remember we are trying to
answer:What is the probability of getting exactlyheads iren tosses of a fair coin?
It is very easy to write down the answer: it is simply

2 \" /1\" 1
Prob(exactly n heads in 2n tosses) = ( n) (5) (5) = o
n

The reason is that each of tB&" strings of heads and tails are equally likely, and there(%f)a

strings with exactly: heads. How big i$>")?
It's now Stirling’s formula to the rescue. We have

2n (2n)!
() = S
(2n)2re2"\/27 - 2n
n”e‘”\/ﬁ . n”e‘”\/ﬁ

22n
v’

Q

thus the probability of exactly heads is

2n\ 1 N 1

n)2n T mn
This means that i = 100 there is a little less than a 6% chance of getting half heatidef
n = 1,000, 000 the probability falls to less than .06%.

The above exercise was actually discussed in the 2008 prestiprimary season. Obama and
Clinton each received 6,001 votes in the democratic prinmargyracuse, NY. While there were
12,346 votes cast in the primary, for simplicity let's asguitmat there were just 12,002, and ask what
is the probability of a tie. If we assume each candidate iskylikely to get any vote, the answer

is just ('2007) /212002 The exact answer is approximately 0.00728; using our aqupation from
above we would estimate it as
1
—— =~ 0.00514
V12,002 ’

which is fairly close to the true answer.

While we found the probability is a little less than 1%, sonegva outlets reported that the proba-
bility was about one in a million, with some going so far asay & was “almost impossible”. Why
are there such different answers? It all depends on how yalehtbe problem. If we assume the
two candidates are equally likely to get each vote, then weageanswer of a little less than 1%.
If, however, we take into account other bits of informatitien the story changes. For example,
Clinton was then a senator from NY, and it should be expedtatighe’ll do better in her current
home state. In fact, she won the state overall with 57.37%e¥bte to Obama’s 40.32%. Again for
ease of analysis, let’s say Clinton had 57% and Obama 43%e (fse these numbers, we no longer
assume each voter is equally likely to vote for Clinton or @bhaand we find the probability of a tie

is just ({202 575001 435001, Using Stirling's formula, we found®") ~ 2*"/\/7n. Thus, under these
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assumptions, the probability of a tie is approximately
212002

v - 6001
Note how widely different the probabilities are dependimgour assumption of what is to be ex-
pected!

. 576001 436001 ~ 1 877.10%,

2.2. Stirling’s Formula and Convergence of Series.Another great application of Stirling’s for-
mula is to help us determine for whatertain series converge. We have lots of powerful tests from
calculus for this purpose, such as the ratio, root and iatdgst; we review these IADD REF;
however, we can frequently avoid having to use these test$natead use the simpler comparison
test by applying Stirling’s formula.

For our first example, let’s take

. 2 28 = 2"

We want to find out for whichr: does it converge. Using the ratio test we would see that keges
for any choice ofr. We could use the root test, but that requires us to knowla bit about the
growth ofn!; fortunately Stirling’s formula gives us this informatiowe have

1/7L n
I x (n"e_" 27m) =

as this tends to infinity we fin¢ll /n!)"/™ tends to zero, and thus by the root test the radius of conver-

gence is infinity (i.e., the series converges fornall

While the above is a method to determine that the seriegfa@onverges for alk, it is quite
unsatisfying. In addition to using Stirling’s formula wesalhad to use the powerful root test. Is it
possible to avoid using the root test, and determine thaséhies always converg@sst by using
Stirling’s formula? The answer is yes, as we now show.

We wish to show the series fef converges for all:. The idea is that! grows so rapidly that,
no matter what: we take,z” /n! rapidly tends to zero. If we can show that, for alksufficiently
large,|z™/n!| < r(x) for somer(x) less than 1, then the series fdrconverges by the comparison
test; we wrote(x) to emphasize that the bound may depend oBxplicitly, let’s say our inequality
holds for alln > N(x). To determine if a series converges, it is enough to studieihes the finite
number of summands in the beginning don't affect convergeWe have

= " > " r(x)N@)
P SR
n=N(z) n=N(z)

We are thus reduced to proving that /n!| < r(z) < 1 for all n large for some(z) < 1. Plugging
in Stirling’s formula, we see that” /n! looks like

" 1 (ex)n < (ex)"
nnhe="\/2mn V2mn \n ~\n/
For any fixedr, oncen > 2ex + 1 then|ex/n| < 1/2, which completes the proof.

MOVE THIS TO ANOTHER CHAPTER, SAY THE GENERATING FUNCTION CH AP-
TER. We can use this type of argument to prove many importantseadrverge. Let’'s consider the
moment generating function of the standard normal (for #fendion and properties of the moment
generating function, seeA®D REF). The moments of the standard normal are readily determined
then™ moment is

/°° R (2m —1)I! if n =2mis even
,un = €r ——¢€ d..'lf = . .
oo V27 0 if n=2m + 1is odd,



21

where the double factorial means take every other term yatilreach 2 or 1. Thug!! = 4 - 2,
5l=5-3-1,6! =6-4-2and so on. The moment generating functidfy (¢), is

o0 oo

Ln (2m — D! ,
My (t) = Elyn — —
x(t) — n! mzz:o (2m)!

There are many ways to do the algebra. We need to understandhpilly (2m — 1)!1t?™ /(2m)! is
decaying. We have

2m -1 (2m — 1! B 1 1
2m)! 2m)-Cm -1 2m-(2m—2)---2  2mm!’
Thus
0 $2m (t2/2)m 2
_ _ _ /2
Mx(t) = mZ:O?mm! - T T

2.3. From Stirling to the Central Limit Theorem. This section becomes a bit technical, and can
safely be skipped; however, if you spend the time mastetiggu’ll learn some very useful tech-
niques for attacking and estimating probabilities, andaeery common pitfall and learn how to
avoid it.

The Central Limit Theorem is one of the gems of probabilifgyisg the sum of nice independent
random variables converges to being normally distributetha number of summands grows. As
a powerful application of Stirling’s formula, we’ll show inplies the Central Limit Theorem for
the special case when the random variab¥gs. .., X5y are all binomial random variables. It is
technically easiest if we normalize these by

1/2 ifn=1
Prob(X;=n) = ¢1/2 ifn=-1 (3)
0 otherwise.

Think of this as a 1 for a head and a -1 for a tail; this normélireallows us to say that the expect
value of the suniX; +- - - + X,y = 0. As we may interprek; as whether or not thé" toss is a head
or a tail, this is the expected number of heads (which is zero)

Let X, ..., Xon be independent binomial random variables with probahbilégsity given by((13).
Then the mean is zero as (1/2) + (—1) - (1/2) = 0, and the variance of each is

1 1
2= (1-02%*=+(-1-0>% = = 1
o ( )2+( )2

Finally, we set
Son = X1+ -+ Xon.
Its mean is zero. This follows from

E[Son] = E[Xy]+ -+ +E[Xon] = 04+---+0 =0.

Similarly, we see the variance 6%y is 2N. We therefore exped,y to be on the order of 0, with

fluctuations on the order af 2.V.
Let’'s consider the distribution &, . We first note that the probability thaty = 2k + 1 is zero.
This is becausé&,,y equals the number of heads minus the number of tails, whialwigys even: if

we havek heads an@N — k tails thenS;y equal2 N — 2k.
The probability thatS,y equals2k is just (77,) (3)V*(3)¥~*. This is because fof,y to equal
2k, we need2k morel’s (heads) than-1’s (tails), and the number dfs and—1’s add to2/N. Thus

we haveN + k heads {'s) and N — k tails (—1's). There ar&2" strings ofl’s and—1's, (zﬁfk) have

exactly N + k heads andV — £ tails, and the probability of each string G§)2N. We have written

(3)¥ 5 (L)N=F to show how to handle the more general case when there is algiliopp of heads

and1 — p of tails.
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We now use Stirling’s Formula to approxima(tjéfk). We find

< 2N ) N (2N)*Ne=2N\/21 - 2N
N+k NNe= N/ 2T NNNe=N+/27r N

B (2N)2N N
(N +E)NH(N — E)N=k\ (N 4+ k)(N — k)
22N 1
VN (1+ %)N+%+k(1 _ %)NJF%—/{
The rest of the argument is just doing some algebra to shawthilsaconverges to a normal distri-
bution. There is, unfortunately, a very common trap peopguently fall into when dealing with

factors such as these. To help you avoid these in the futedl, describe this common error first
and then finish the proof.

We would like to use the definition ef from ADD REF to deduce that a& — oo, (1 + %)N ~
e"; unfortunately, we must be a little more careful as the \&lfé: we consider grow withV. For
example, we might believe that + +) — ¢* and(1 — £)~ — e7*, so these factors cancel. As
is small relative taV we may ignore the factors df/2, and then say

kA N
(ry) = (rx) e

similarly, (1 — £)=% — ¢**/¥. Thus we would claimdnd we shall see later in LemmaR.1 that this

claim is in error!) that
L\ Vot L\ N2k ,
1+ — 1—— 25N
(ex) - (mw) o

)N-i-%—k’

1
We show thai(1 + %)N“M (1-£ — ¢¥*/N, The importance of this calculation is that

it highlights how cruciatatesof convergence are. While it is true that the main term(slﬁf%)N are

e**, the error terms (in the convergence) are quite importantt,yéeld large secondary terms when
k is a power ofN. What happens here is that the secondary terms from theskttaos reinforce
each other. Another way of putting it is that one factor tetedsfinity while the other tends to zero.
Remember thato - 0 is one of our undefined expressions; it can be anything dépgrah how
rapidly the terms grow and decay; we’ll say more about thte@end of the section.

The short of it is that we cannot, sadly, just L(SeJr %)N ~ e¢". We need to be more careful. The
correct approach is to take the logarithms of the two fa¢iaglor expand the logarithms, and then

exponentiate. This allows us to better keep track of ther ¢ermns.
Before doing all of this, we need to know roughly what range:ofill be important. As the

standard deviation i§/2/N, we expect that the only’s that really matter are those within a few

standard deviations from 0; equivalentlys up to a bit more thar/2/N. We can carefully quantify
exactly how large we need to stuéyby using Chebyshev’s Inequality (sé&®D REF). From this

we learn that we need only studywhere| k| is at mostVz2*<. This is because the standard deviation
of Son IS vV2N. We then have

1
1/24€
PI‘Ob(‘SQN - O| > (2N) /2+ ) < W,

becausd2N)'/?*¢ = (2N)StDev(S,y). Thus it suffices to analyze the probability tifaty, = 2k
for |k| < Nzts.

We now come to the promised lemma which tells us what the sghte is for the product; the
proof will show us how we should attack problems like this engral.
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Lemma 2.1.For anye < ¢, for N — oo with & < (2V)'/**<, we have
L N+lik L N+i-k , e
( + N) < N) —r e e
Proof: Recall that forjz| < 1,

n+1 n

Mg

log(1 + )
n=1

As we are assuming < (2N)'/2*<, note that any term below of sizé/N?, k* /N2 or k* /N3 will
be negligible. Thus if we define

N+1+k N+1—k
= ()™ ()
then using the big-Oh notation froADD REF we find
1 k 1 B\ Nk
log Py = <N+§+k) log<1+ﬁ) + <N+§—k) log(l—N)

1 k k2 3
= @”5*@(N—EW+OGﬁD
1 k k? k3
*(N+§‘0<‘N‘EW+O<NQ)
2k? 1\ k2 k3 E*
:‘ﬁ‘Q@”E)ﬁﬁ+OQ—+NQ

k2 Kk K
- Lio(mtata):

N N2 N2 N3
As k < (2N)Y/2+¢, for e < 1/9 the big-Oh term is dominated by '/, and we finally obtain that
Py = ekQ/NeO(N*1/6)7
which completes the proof. O

We now finish the proof ob,y converging to a Gaussian. Combining Lenima 2.1 with (4) gield

N+k)2n = N
The proof of the Central Limit Theorem in this case is comgaldby some simple algebra. We are
studyingSoy = 2k, so we should replace’ with (2k)2/4. Similarly, since the variance df,y is
2N, we should replacé&’ with (2N)/2. While these may seem like unimportant algebra tricks, it
is very useful to gain an ease at doing this. By doing suchIssdaistments we make it easier to
compare our expression with its conjectured value. We find

2N 1 ~ 2 —(2k)2/2(2N

RemembelS,y is never odd. The factor @fin the numerator of the normalization constant above
reflects this fact, namely the contribution from the probgbihat S, is even is twice as large as
we would expect, because it has to account for the fact tiegptbbability thatS,y is odd is zero.
Thus the above looks like a Gaussian with méaand variance N. For N large such a Gaussian

is slowly varying, and integrating fro¥ to 2k +2 is basically2/ /27 (2N) - exp —(2k)?/2(2N). O

As our proof was long, let's spend some time going over thepagts. We were fortunate in that
we had an explicit formula for the probability, and that fadaninvolved binomial coefficients. We
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used Chebyshev’s inequality to limit which probabilitiee Wad to investigate. We then expanded
using Stirling’s formula, and did some algebra to make opression look like a Gaussian.

} For a nice challenge: Can you generalize the above argurttehésdle the case when# %

2.4. Integral Test and the Poor Man'’s Stirling. Using the integral test from calculus, we’ll show
that

As we've remarked throughout the book, whenever we see aularour first response should be
to test its reasonableness. Before going through the pletésf,compare this to Stirling’s formula,

which says! =~ n"e™"v/27wn. We correctly identify the main factor af'e~", but we miss the factor

of v/2mn. Itis interesting to note how much we miss by. Our lower boisndste while our upper
bound isen. If we take the geometric mean of these two (recall the geometean ofz andy is

VZY), Ve - en, we getey/n. This is approximatel2.718,/n, which is remarkably close to the true
answer, which is/2mn = 2.5063/n.

The gist of the above is: our answer is quite close. The argtsrigelow are fairly elementary.
The |nvo|ve the integral test from calculus, and the Taykries expansion dbg(1 + x), which is

justr — = + £ —.... While the algebra grows a bit at the end, it's important ndet that distract
from the maln idea, WhICh is that we can approximate a sum wetlyand fairly easily through an
integral. The difficulty is when we want to quantify how cldke integral is to our sum; this requires
us to do some slightly tedious book-keeping. We go througld#tails of this proof to highlight how
you can use these techniques to attack problems. We'll theagrguments afterwards, emphasizing
what you should take-away from all of this.

Now, to the proof! LetP = n! (we use the letteP becausgroductstarts withP). It is very hard
to look at a product and have a sense of what it's saying. Bhis part because our experience in
previous classes is always with sums, not products. For pbkaimm calculus we encounter Riemann
sums all the time; I've never seen a Riemann product!

% We thus want to convert our problem ehto a related one where we have more experience. The
natural thing to do is to take the logarithm of both sides. fdason is that the logarithm of a product
is the sum of the logarithms. This is excellent general aglwou should have a Pavlovian response
to take a logarithm whenever you run into a product.
Returning to our problem, we have

log P = logn! = logl+log2+---+logn = Zlogk.

We want to approximate this sum with an integral. Note thai(if) = log = then this function is
increasing forr > 1. We claim this means

n n n+1
/ logtdt < Zlogk < / log tdt.
1 Pt 2

This follows by looking at the upper and lower sums; noteithtee same type of argument as you've
seen in proving the Fundamental Theorem of Calculus (thepter and lower sum approach); see
Figurd2. This is probably the most annoying part of the argningetting the bounds for the integrals
correct.

We now come to the hardest part of the argument. We need to Wwinawis the integral ofog ¢.
This is not one of the standard functions, but it turns outaweha relatively simple anti-derivative,
namelytlogt — ¢t. While it is very hard to find a typical anti-derivative, itgry straightforward
to check and make sure it works — all we have to do is take thead®e. We can now use this to
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4 6 8 10 4 6 8 10

FIGURE 2. Lower and upper bound fasg n! whenn = 10.

approximatdog n!. Note we only make the upper integral larger if we start it abdl not 2. We find

n n+1
(tlogt —t) < logn! < (tlogt —t)
t=1 t=1
nlogn—n+1 < logn! < (n+1)log(n+1)—(n+1)+1.

We'll study the lower bound first. From
nlogn —n+1 < logn!,

we find after exponentiating that

6nlogn—n—l—l N S nl.

What about the upper bound? We have
(n+1)log(n+1)—n = (n+1log( ( ))
(

1
= (n+1)logn+ n+1)log( —)—n

1 1 1
= nlogn+logn—n+(n—1) <5_2—n2+%_)

< mnlogn+logn—n-+1,

where the last follows from the fact that we have an altengasieries, and so truncating after a
positive term overestimates the sum. Exponentiating gives

n! S enlogn—n—i—logn-‘rl = n"e".en.

Putting the two bounds together, we've shown that

n"e"-e < nl < n"e"-en,

which is what we wanted to show. Note our arguments weregngtementary, and introduce many
nice and powerful techniques that can be used for a varigtyaiflems. We replace a sum with an
integral. We replace a complicated functidog(n + 1), with its Taylor expansion. We note that
for an alternating series, if we truncate after a positiventeve over-estimate. Finally, and most
importantly, we've seen how to get a handle on products — waldiake logarithms and convert the
product to a sum!

2.5. Elementary Approaches towards Stirling’s Formula. In the last section we used the integral
test to get very good upper and lower boundsiforWhile the bounds are great, we did have to use
calculus twice. Once was in applying the integral test, d&edather was being inspired to see that
the anti-derivative ofog ¢ ist log t — t; while it is easy to check this by differentiation, if you et
seen such relations before it looks like it is a real chaketagfind.

In this section we’ll present an entirely elementary apphotp estimates of Stirling’s formula.
We’ll mostly avoid using calculus, instead just countingairtlever mannerYou may safely skip
this section; however, the following arguments highliglgreat way to look at estimation, and these
ideas will almost surely be useful for a variety of other pgesbs that you’ll encounter over the years.



26

2.5.1. Lower bounds towards Stirling, IOne of the most useful skills you can develop is the knack
for how to approximate well a very complicated quantity. Whve can often resort to a computer for
brute force computations to get a feel for the answer, theréraes when the parameter dependence
is so wild that this is not realistic. Thus, it is very usefléarn how to look at a problem and glean
something about the behavior as parameters change.

Stirling’s formula provides a wonderful testing ground gmme of these methods. Remember it
says thai! ~ n"e "v/27n asn tends to infinity. We've already seen how to get a reasongiperu
bound without too much work; what about a good lower bound? ftst attempt (sed&DD REF)
was quite poor; now we show a truly remarkable approach #satd to a very good lower bound
with very little work.

To simplify the presentation, we assume that 2"V for someN; if we don’t make this assump-
tion, we need to use floor functions throughout, or do a bitsawguing (which we’ll do later). Using
the floor function makes the formulas and the analysis lookencomplicated, and the key insight,
the main idea, is now buried in unenlightening algebra whschequired to make the statements
true. We prefer to concentrate on this special case as wéearhtghlight the method without being
bogged down in details.

The idea is to usdyadic decompositions This is a powerful idea, and is used throughout math-
ematics. We study the factors ofin the intervalsl; = (n/2,n], Iy = (n/4,n/2], I3 = (n/8,n/4],

..., In = (1,2). Note onI,, that each of the,/2* factors is at least/2*. Thus

n! = ﬁHm

k=1mely
N k
n\ n/2
> 11(5)
k=1

_ nn/2+n/4+n/8+---+n/2N2—n/24—n/48—n/8 . (2N)—n/2N‘

Let’s look at each factor above slowly and carefully. Note powers of: almostsum ton; they
would if we just addn /2 = 1 (since we are assuming= 2"). Remember, though, that= 2%;

there is thus no harm in multiplying l:(yz/2N)"/2N as this is just!. We now have! is greater than

nn/2+n/4+n/8+---+n/2N+n/2N2—n/24—n/48—n/8 . (2N>—n/2N<2)—n/2N.

Thus then-term gives:™. What of the sum of the powers B? That'’s just

9—n/24-n/ig—n/8 (2N)—n/2N . 2—n/2N _ 2-n(1/2+2/4+3/8+---N/2N)2—2N/2N
> 2_n(sz:O k/2%)
S Q_H(ZI?;O k‘/?k)Q—l
— 2—2TL—1 — 14—n
5 .

To see this, we use the following wonderful identity:

et
2 12y

for a proof, see the section on differentiating identidd3D REF.
Putting everything together, we find
n! > 171"_14_",
2
which compares favorably to the truth, whichi%e=".

As with many things in life, we can get a better result if we aiking to do a little more work.
For example, consider the internvial= (n/2, n]. We can pair elements at the beginning and the end:
nandn/2+1,n—1andn/2+2,n—2andn/2+ 3 and so on unti$n/4 and3n/4 + 1; for example,
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if we have the interva(8, 16] then the pairs are: (16,9), (15,10), (14,11), and (13,12).ndiv use
one of the gold standard problems from calculus: if we wamhé&ximizexy given thatr +y = L
then the maximum occurs when= y = L /2. This is frequently referred to as the Farmer Bob (or
Brown) problem, and is given the riveting interpretatioatth we are trying to find the rectangular
pen that encloses the maximum area for his cows to graze gmatrihe perimeter i€, then the
answer is a square. Thus of all our pairs, the one that hasttest product i8n/4 with 3n/4 + 1,
and the smallest is andn/2 + 1, which has a product exceeding/2. We therefore decrease the

product of all elements i, by replacing each product wittyn2/2 = n//2. Thus a little thought

gives us that
n/2
3n n n n \"? nv2
(n—=1)---—=...(= o> = — [ 2X=
n-(n—1) 1 <2+1> 2_(\/§) <2> )

a nice improvement overn/2)™/2, and this didn’t require too much additional work!
We now do a similar analysis afa; again the worst case is from the paif2 andn/4 + 1 which
has a product exceeding /8. Arguing as before, we find

n/4 n/4 n/4
o= (&)= ()" = ()"

At this point hopefully the pattern is becoming clear. Wedalmost exactly what we had before;

the only difference is that we havena/2 in the numerator each time instead of justarThis leads
to very minor changes in the algebra, and we find

nl > %(nﬂm—n — an(2vE) .

Notice how close we are tg'e ", as2v/2 ~ 2.82843, which is just a shade larger thams 2.71828.
It's amazing how close our analysis has brought us to Sgirlive’re in striking distance of it in fact!

We end this section on elementary questions with a few tHimggou to try.
Can you modify the above argument to get a reasonably gooel iggund forn!?

After reading the above argument, you should be wonderiagtgxhow far can we push things.
What if we didn’'t do a dyadic decomposition; what if instead did say a triadic:(2n/3, n],
(4n/9,2n/3], .... Or perhaps fix a and look at(rn, n], (r*n,rn], ... for some universal constant
r. Using this and the pairing method described above, whatisrgest lower bound attainable. In
other words, what value of maximizes the lower bound for the product.

2.5.2. Lower bounds towards Stirling, 1IWe continue seeing just how far we can push elementary
arguments. Of course, in some sense there is no need to gdthdris are more powerful approaches
that yield better results with less work. As this is true, mdéft with the natural, nagging question:
why spend time reading this?

There are several reasons for giving these arguments. Boaigh they are weaker than what
we can prove, they need less machinery. To prove Stirling®fla, or good bounds towards it,
requires results from calculus, real and complex analygsjice to see what we can do just from
basic properties of the integers. Second, there are num@mblems where we just need some
simple bound. By carefully going through these pages, yogel a sense of how to generate such
elementary bounds, which we hope will help you in somethateyrlin life.

Again, the rest of the material in this subsection is advdrared not needed in the rest of the book.
You may safely skip it, but we urge you to at least skim thepmaents.

We now generalize our argument showing that- (n/4)" for n = 2V to any integer; in other
words, it was harmless assumindnad the special form = 2. Suppose@* < n < 2¥+1. Then we
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can writen = 2% 4+ m for some positiven < 2*, and use our previous result to conclude:
nl=mn-(n—1)---2+1)- (2 > 2™ 251 > (28" (2F/9)%.

Our goal, then, is to prove that this quantity is greater thafl)". Here’s one possible method:
write

2k (254 = (n/4)"
If & > n, then we're done. Taking logarithms, we find:
k-m-log2+ 2" -1og(2)(k —2) = a(log(n) —2log?2).
Solving fora gives
k-m-log2+ 2% -log(2)(k — 2)
log(n) — 2log?2

Remember, we want to show that> n. Substituting in our prior expression= 2* 4 m, this is
equivalent to showing

o =

k-m-log?2+ 2% -log(2)(k — 2)
log(2F +m) — 2log 2
So long ag* +m > 4, the denominator is positive, so we may multiply througthwitt altering the
inequality:
log(2)(k(2% +m) — 2" > (28 + m) log(2" +m) — log(2)2*™ — 2m log 2
With a bit of algebra, we can turn this into a nicer expression
log(2M)(2F +m) > (28 + m)(log(2F + m) — 2mlog?2
2mlog2 > (28 +m)log(1 +m/2%)
2log2 > (1+2F/m)log(1 +m/2%).
Let's writet = m/2*. Then showing that: > n is equivalent to showing
2log2 > (14 1/t)log(1+1)

fort € (0,1). Why (0,1)? Since we know) < m < 2%, then0 < m/2* < 1, sot is always
between 0 and 1. While we’re only really interested in whethis equation holds whenis of the
form m /2%, if we can prove it for alk in (0,1), then it will automatically hold for the special uais
we care about. Letting(¢t) = (1 + 1/t)log(1 + ¢), we seef’(t) = (¢t — log(1 + t))/t*, which is
positive for allt > 0 (fun exercise: show that the limit asapproaches 0 of’(¢) is 1/2). Since
f(1) = 2log 2, we see thaf(t) < 2log2forallt € (0,1). Thereforenw > n, son! > (n/4)" for all
integern.

> 28 4 m.

2.5.3. Lower bounds towards Stirling, Ill. Again, this subsectinay safely be skipped; it's the last
in our chain of seeing just how far elementary arguments @apushed. Reading this is a great way
to see how to do such arguments, and if you continue in préibadhd mathematics there is a good
chance you'll have to argue along these lines some day.

We've given a few proofs now showing that > (n/4)" for any integem. However, we know
that Stirling’s formula tells us that! > (n/e)”. Why have we been messing around with 4, then,
and where does come into play? The following sketch doespitbvethatn! > (n/e)”, but hints
suggestively that might come enter into our equations.

In our previous arguments we've takerand then broken the number line up into the following
intervals: {[n,n/2),[n/2,n/4),...}. The issue with this approach is that n/2) is a pretty big
interval, so we lose a fair amount of information by approaiingn - (n — 1) - - - 2 by (n/2)"/2. It
would be better if we could use a smaller interval. Therefi@tés think about using some ratio< 1,
and suppose. = (1/7)*. We would like to divide the number line intd+, rn), [rn,rn),...},
although the problem we run into is thet: isn’t always going to be an integer for every integer
¢ < k. Putting that issue aside for nowhis is why this isn’'t a proo}! let's proceed as we typically
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do: having broken up the number line, we want to say tiat greater than the product of the
smallest number in each interval raised to the number ofjé@rtein that interval:

nl > (,rn)(l—r)n<r2n)r-(l—r)n . (7,3n)7"2-(1—7")n . (Tk . n)r’ﬁl-u—r)n.
Sincer**™n < 1 for all m > 1, we can extend this product to infinity:
nl > (rp)0="n(p2p)r0-nn (r3n)r2~(1—r)n (e n)r‘“*1~(1—r)n .
Let’s simplify this a bit. Looking at the terms, we have
n(l—r+r—r2+r2—---)n -
because the sum telescopes. Looking atttesms we see
n(l—r)(142r+3r24-) Tn(l—r)/r(r+2r2+3r3+---)
Jn=r)/rr/(1=1)?
— /)

r

where in the third step we use the identity

krk = ! :
kz:; (1 —r)2

remember we used this identity earlier as well! Combinirgttho terms, we have

nl > (r/0="

To make this inequality as strong as possible, we want to firdargest possible value of/(—")

for r € (0,1). Substitutingz: = 1/(1 — r), this becomes: what is the limit as— oo of (1 — 1/2)*?
We've encountered this limit before in SectiREFERENCE, and the answer is/e (of course!).
Thus we see that this argument gives a heuristic proofithat (n/e)".

2.6. Stationary Phase and Stirling. Any result as important as Stirling’s formula deserves pldt
proofs. The proof below is a modification from Eric W. Weiss®post “Stirling’s Approximation”
on MathWorld-A Wolfram Web Resource; see

http:// mat hworl d. wol fram com StirlingsApproxi mation. htm .
To prove the theorem, we’ll use the identity

nl =T'(n+1) = / e " dx. 4)
0
A review of the Gamma function, including a proof of this itign can be foundADD REF.

In order to get an approximation, we would like to find where ititegrand is largest. Because of
the exponential factor in the integrand, we will take thediodnm before differentiating. We can do
this as maximizing a positive functiofyx) is equivalent to maximizindpg f(z). There are many
useful versions of this principle: in calculus it is oftersea to minimize the square of the distance
rather than the distance (as this avoids the square-rootidum).

We find p p
X, .n n

T log(e™*z") dx( x + nlogz) . L.
The maximum value of the integrand is therefore seen to oaoly for x = n. The exponential
factor shrinks much more quickly than the growth:6f so weassumehatz = n + « with |o| much
smaller them. We are not going to say anything further about this assuwmpthe purpose here is
to provide another argument in support of Stirling’s forenuiot to provide the proof in all its glory
and gory. We have

logz = log(n+ «) = logn + log (1+g).
n
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We now expand the second term using the Taylor seriel®got + =) to find
2

log(n + o) = logn+g - 1a——|—~-~ :
n  2n?
Therefore
log(z"e™) = nlogx—x = n (logn—i— 2 1&2) —(n+«)
n  2n?
o
= nlogn—n — 2
It follows that
e ~ exp (nlogn -—n— a_2> = n"e " exp (_a_z) i
2n? 2

Returning to the integral expression fdrof (4), we have

o
nl = / e “z"dx
0
o) 042
~ ne " exp | —— | da
[ (=5s)
o) a?
~ n"e ™" / exp (——) da.
oo 2n2

In the last step, we rely on the fact that the integrand is gemgll fora < —n. The integral is the
the same as the one we would obtain in integrating a normalityemnith mean) and variance/n.
Its value isv/27n. We thus have

n_ —n

n! ~ n"e 2mn,
which is the statement of the theorem. O

2.7. The Central Limit Theorem and Stirling. We end this chapter with one more proof of Stir-
ling’s formula. We continue our trend of needing more and enaput. Our first proof was very
elementary, essentially just the integral test. The see@simore complicated, needing the Gamma
function. Our final approach involves an application of trenal Limit Theorem, one of the gems
of probability. We prove the Central Limit TheoremADD REF,; if you haven’t seen the proof you
can go to that section, or take the result on faith for now &adi up on it later.

The idea of the proof is to apply the Central Limit Theorem tuan of independent, identically
distributed Poisson random variables with parameter 1. &Ve lan explicit formula for this proba-
bility, as a sum of appropriately normalized Poissoniamlosn variables is itself Poissonian. We also
know what this probability is (or at least approximatelybg)the Central Limit Theorem. Equating
the two gives Stirling’s formula.

Remember

(1) X has a Poisson distribution with parameteneans

Ale— A . . )
T >
Prob(X =n) = o= ifn> 0 is an integer
0 otherwise.
(2) If Xy,..., Xy are independent, identically distributed random varisih meary:, vari-

ancec? and a little more (such as the third moment is finite, or the mahgenerating
function exists), therX; + - - - + Xy converges to being normally distributed with mean
and varianceio?.

Let’s flesh out the details. An important and useful fact alfmisson random variables is that the

sum ofn independent identically distributed Poisson random éemwith parametex is a Poisson
random variable with parameter\. As the mass function for a Poisson random varidblevith
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parameten is Prob(Y = m) = A™e~*/m! for m a non-negative integer and 0 otherwise. Thus the
probability density ofX; + - - - + X, is

f(m) n™e~"/m! if mis a non-negative integer
m =
0 otherwise.
Forn large,X; +- - -+ X, (in addition to being a Poisson random variable with parametis by
the Central Limit Theorem approximately normal with meanl and variance: (as the mean and
variance of a Poisson random variable with paramgisr\ for each). We must be a bit careful due

to the discreteness of the values taken onXhyt+ - - - + X,,; however, a little inspection shows that
the Central Limit Theorem allows us to approximate the pbaliigt » — % <Xi+---+ X, <n+ %

with )
n-l—% 1 5 1 1/2 )
exp(—(x—n)"/2n)dx = / ety
/n_% V2mn p( ( I/ ) V2mn J 12

As n is large, we may approximate /2" with the zeroth term of its Taylor series expansion about
t = 0, which is 1. Thus

1 1 1
Prob(n—=<X;j+---+ X, <n+=-)] = 11,
( 2 = ! 2) V2mn
where the second 1 is from the length of the interval; howevercan easily calculate the left hand
side, as this is just the probability our Poisson randomatdeiX ; + - - - + X,, with parameter. takes
on the valuen; this isn™e™"/n!. We thus find

n"e " 1 _
— R = n! = n"e"V2mn.
n 2mn

One of the most common mistakes in this approach is forgedtiet the Poisson is discrete and the
standard normal is continuoud-hus, to approximate the Poisson’s mass,atve should integrate
the continuous density of the standard normal frem 1/2 ton + 1/2. It's just fortuitous that, for
this problem, we get the same answer if we forget about tkegiat.
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