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Abstract Using a few basics from integration theory, a short proof of nowhere-
differentiability of Weierstrass functions is given. Restated in terms of the Fourier
transformation, the method consists in principle of a second microlocalisation, which
is used to derive two general results on existence of nowhere differentiable functions.
Examples are given in which the frequencies are of polynomial growth and of almost
quadratic growth as a borderline case.
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1 Introduction

In 1872, K. Weierstrass presented his famous example of a nowhere differentiable
function W on the real line R. With two real parameters b ≥ a > 1, this may be
written as

W(t) =
∞∑

j=0

a−j cos(bj t), t ∈ R. (1.1)
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Weierstrass proved that W is continuous at every t0 ∈ R, but not differentiable at any
t0 ∈ R if

b

a
> 1 + 3π

2
, b is an odd integer. (1.2)

Subsequently several mathematicians attempted to relax condition (1.2), but with lim-
ited luck. Much later G.H. Hardy [5] was able to remove it:

Theorem 1.1 (Hardy [5], 1916) For every real number b ≥ a > 1 the functions

W(t) =
∞∑

j=0

a−j cos(bj t), S(t) =
∞∑

j=0

a−j sin(bj t), (1.3)

are bounded and continuous on R, but have no points of differentiability.

The assumption b ≥ a here is optimal for every a > 1, for W is in C1(R) whenever
b
a

< 1, due to uniform convergence of the derivatives. (Strangely this was unobserved
in [5, Sect. 1.2], where Hardy sought to justify the sufficient condition b ≥ a as being
more natural than e.g., (1.2).) Hardy also proved that S′(0) = +∞ for

1 < a ≤ b < 2a − 1, (1.4)

so then the graph of S(t) is not rough at t = 0 (similarly W ′(π/2) = +∞ if in addition
b ∈ 4N + 1). However, Hardy’s treatment is not entirely elementary and yet it fills ca.
15 pages.

It is perhaps partly for this reason that attempts have been made over the years to
find other examples. These have often involved a replacement of the sine and cosine
above by a function with a zig-zag graph, the first one due to T. Takagi [17, 18] who
introduced t �→ ∑∞

j=0 2−j dist(2j t,Z).

However, the price is that the partial sums are not C1 for such functions, and due
to the dilations every x ∈ R is a limit x = lim rN where each rN ∈ Q is a point at
which the N th partial sum has no derivatives; whence nowhere-differentiability of
the sum function is less startling. Nevertheless, a fine example of this sort was given
in just 13 lines by J. McCarthy [12].

Somewhat surprisingly, there is an equally short proof of nowhere-differentiability
for W and S, using a few basics of integration theory. This is explained below in the
introduction.

It is a major purpose of this paper to show that the simple method has an easy
extension to large classes of nowhere differentiable functions. Thus the main part of
the paper contains two general theorems, of which at least the last should be a novelty,
and it ends with new examples with slow increase of the frequencies.

Remark 1.2 By a well-known reasoning, W is nowhere-differentiable since the j th
term cannot cancel the oscillations of the previous ones: it is out of phase with previ-
ous terms as b > 1 and the amplitudes decay exponentially since 1

a
< 1; as b ≥ a > 1

the combined effect is large enough (vindicated by the optimality of b ≥ a noted after
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Theorem 1.1). However, it will be shown in Sect. 4 that frequencies growing almost
quadratically suffice for nowhere-differentiability.

To present the ideas in a clearer way, one may consider the following function fθ

which (in this paper) serves as a typical nowhere differentiable function,

fθ (t) =
∞∑

j=0

2−jθ ei 2j t , 0 < θ ≤ 1. (1.5)

It is convenient to choose an auxiliary function χ : R → C thus: the Fourier trans-
formed function F χ(τ) = χ̂ (τ ) = ∫

R
e− i tτ χ(t) dt is chosen as a C∞-function ful-

filling

χ̂ (1) = 1, χ̂(τ ) = 0 for τ /∈ ] 1
2 ,2

[ ; (1.6)

for example by setting χ̂ (τ ) = exp(2 − 1
(2−τ)(τ−1/2)

) for τ ∈] 1
2 ,2[ .

Using (1.6) it is easy to show that χ(t) = F −1χ̂(t) = 1
2π

∫
R

ei tτ χ̂ (τ ) dτ is con-
tinuous and that for each k ∈ N0 the function tkχ(t) = F −1(ik χ̂ (k)) is bounded (by
sup|χ̂ (k)|). Therefore χ is integrable, ie χ ∈ L1(R), and clearly

∫
χ dt = χ̂ (0) = 0.

With this preparation, the function fθ is particularly simple to treat, using only
ordinary exercises in integration theory: First one may introduce the convolution

2kχ(2k·) ∗ fθ (t0) =
∫

R

2kχ(2kt)fθ (t0 − t) dt, (1.7)

which is in L∞(R) since fθ ∈ L∞(R) and χ ∈ L1(R). Secondly this will be analysed
in two different ways in the proof of

Proposition 1.3 For 0 < θ ≤ 1 the function fθ (t) = ∑∞
j=0 2−jθ ei 2j t is a continuous

2π -periodic, hence bounded function fθ : R → C without points of differentiability.

Proof By uniform convergence fθ is for θ > 0 a continuous 2π -periodic and
bounded function; this follows from Weierstrass’s majorant criterion as

∑
2−jθ < ∞.

Inserting the series defining fθ into (1.7), Lebesgue’s theorem on majorised con-

vergence allows the sum and integral to be interchanged (e.g., with 2k

1−2−θ |χ(2kt)| as
a majorant), i.e.

2kχ(2k·) ∗ fθ (t0) = lim
N→∞

N∑

j=0

2−jθ

∫

R

2kχ(2kt)ei 2j (t0−t) dt

=
∞∑

j=0

2−jθ ei 2j t0

∫

R

e− i z2j−k

χ(z) dz

= 2−kθ ei 2k t0 χ̂ (1) = 2−kθ ei 2k t0 . (1.8)

Here it was also used that χ̂ (2j−k) = 1 for j = k and equals 0 for j 
= k.
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Moreover, since fθ (t0)
∫

R
χ dz = 0 (cf. the note prior to the proposition) this gives

2−kθ ei 2k t0 = 2kχ(2k·) ∗ fθ (t0) =
∫

R

χ(z)(fθ (t0 − 2−kz) − fθ (t0)) dz. (1.9)

So if fθ were differentiable at t0, F(h) := 1
h
(fθ (t0 + h) − fθ (t0)) would define a

function in C(R) ∩ L∞(R) for which F(0) = f ′(t0), and Lebesgue’s theorem, ap-
plied with |zχ(z)| supR |F | as the majorant, would imply that

−2(1−θ)kei 2k t0 =
∫

F(−2−kz)zχ(z) dz

−−−→
k→∞ f ′(t0)

∫

R

zχ(z) dz = f ′(t0) i
dχ̂

dτ
(0) = 0; (1.10)

hence that 1 − θ < 0. This would contradict the assumption that θ ≤ 1. �

By now this argument is of course of a classical nature, although not well estab-
lished in the literature. E.g., recently R. Shakarchi and E.M. Stein treated nowhere-
differentiability of fθ in Theorem. 3.1 of Chap. 1 in their treatise [16] with a method
they described thus: “The proof of the theorem is really the story of three meth-
ods of summing a Fourier series . . . partial sums . . . Cesaro summability . . . delayed
means.” However, they covered 0 < θ < 1 in a few pages with refinements for θ = 1
sketched there in Problem 5.8 based on the Poisson summation formula.

The present proofs are not confined to periodic functions (cf. the next section), for
the theory of lacunary Fourier series is replaced by the Fourier transformation F and
its basic properties.

Moreover, also Hardy’s theorem can be obtained in this way, with a few modifica-
tions. The main point is to keep the factor ei 2k t0 instead of introducing cos(2kt0) and
sin(2kt0) that appear in W and S, but do not a priori stay away from 0 as k → ∞.
Luckily this difficulty (which was dealt with at length in [5]) disappears with the
present approach:

Proof of Theorem 1.1 As a > 1, clearly W ∈ C(R) ∩ L∞. Since b > 1 it may in this
proof be arranged that χ̂ (1) = 1 and χ̂ (τ ) 
= 0 only for 1

b
< τ < b. As for fθ this

gives, by Euler’s formula,

bkχ(bk·) ∗ W(t0) =
∞∑

j=0

a−j

∫

R

bkχ(bkt)
1

2
(eibj (t0−t) + eibj (t−t0)) dt. (1.11)

The term eibj (t−t0) is redundant here, for z := tbk yields
∫

eibj tχ(bkt)bk dt =∫
ei zbj−k

χ(z) dz = χ̂ (−bj−k) = 0, as χ̂ vanishes on ]−∞,0]. So as in (1.8), one

has bkχ(bk·) ∗ W(t0) = eibk t0

2ak .

Hence existence of W ′(t0) would imply that limk(
b
a
)keibkt0 = 0; cf. (1.9)–(1.10).

This would contradict that b ≥ a, so W is nowhere differentiable. Similarly S(t) is
so. �
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It is known that nowhere-differentiability of W can be derived with wavelets,
cf. [6]; an elementary explanation has been given in [1], but only for b > a. In com-
parison the above proofs are short and cover all cases through “first principles” of
integration theory.

In Sect. 2 a general result on nowhere differentiable functions is given. Refin-
ing a dilation argument, a further extension is found in Sect. 3, including functions
with polynomial frequency growth. Borderline cases with quasi-quadratic growth are
given in Sect. 4.

Remark 1.4 In the proof of Theorem 1.1, Lebesgue’s theorem on majorised conver-
gence is the most advanced part. As this result appeared in 1908, cf. [10, p. 12], it
seems that the argument above could, perhaps, have been written down a century ago.

2 Proof by Microlocalisation

To emphasize why the proofs of Proposition 1.3 and Theorem 1.1 work, the proof of
the general Theorem 2.1 below will use the Fourier transformation F more consis-
tently.

To apply F to non-integrable functions, it is convenient to use a few elements of
the distribution theory of L. Schwartz [15]. (An introduction to this could be [14].)

Recall that F f (τ) = f̂ (τ ) = ∫
R

e− i tτ f (t) dt defines a bijection F : S(R) →
S(R), when S(R) denotes the Schwartz space of rapidly decreasing C∞-functions.
Moreover, F extends by duality to the space S ′(R) of so-called temperate distribu-
tions, which contains Lp(R) for 1 ≤ p ≤ ∞. In particular it applies to exponential
functions eibt , and as a basic exercise this yields 2π times the Dirac measure δb , ie
the point measure at τ = b,

F (eib·)(τ ) = 2πδ(τ − b) = 2πδb(τ ). (2.1)

This applies in a discussion of the function f (t) = ∑∞
j=0 aj e

ibj t with general
amplitudes aj ∈ C and frequencies 0 < b0 < b1 < · · · < bj < · · · with bj → ∞,
written 0 < bj ↗ ∞ for brevity. (There could be finitely many bj ≤ 0, but this would
only contribute with a C∞-term.)

Obviously the condition
∑

j |aj | < ∞ implies f ∈ C(R)∩L∞(R), so f ∈ S ′(R),
and since F applies termwise (it is continuous on S ′(R)), one has by (2.1)

F f =
∞∑

j=0

aj F (eibj ) = 2π

∞∑

j=0

aj δbj
. (2.2)

Of course (2.2) just expresses that fθ is synthesized from the frequencies b0, b1, . . .

When lim sup
bj+1
bj

> 1, then each frequency may be picked out in a well-known

way: fixing λ ∈]1, lim sup
bj+1
bj

[ there is a χ ∈ S(R) for which χ̂ (1) = 1 while

χ̂ (τ ) 
= 0 only for 1
λ

< τ < λ. Then bk > λbk−1 for all k ≥ K , if K is chosen ap-
propriately. Considering only k ≥ K in the following, one has χ̂ (τ/bk) 
= 0 only for
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τ ∈] bk

λ
;λbk[ . Because [ bk

λ
;λbk] ⊂ ]bk−1;bk+1[ and (bk) is monotone increasing,

χ̂(τ/bk)δbj
(τ ) =

{
0, for j 
= k,

δbk
, for j = k.

(2.3)

In general F (χ ∗ f ) = χ̂ · f̂ holds for all χ ∈ S(R) and f ∈ L∞ ⊂ S ′(R), whence

F (bkχ(bk·) ∗ f ) = χ̂(·/bk) · F f = 2π

∞∑

j=0

aj χ̂(·/bk)δbj
= 2πakδbk

. (2.4)

So by use of F −1 and (2.1),

bkχ(bk·) ∗ f (t) = 2πak F −1δbk
(t) = ake

ibkt . (2.5)

This gives back (1.8) in case ak = 2−kθ and bk = 2k , but the derivation above is more
transparent than e.g. the proof of (1.8), since it is clear why convolution by bkχ(bk·)
just gives the kth term.

The process in (2.4)–(2.5) has of course been known for ages, but with distrib-
ution theory it is fully justified although F f consists of measures. In principle, it
is a banal example of what is sometimes called a second microlocalisation of f ,
since χ̂ (bkτ )F f (τ) is localised to frequencies τ restricted in both size and direction;
namely to |τ | ≈ bk and τ > 0, respectively.

The second microlocalisation is more visible in a separate treatment of

Ref (t) =
∞∑

j=0

aj cos(bj t), Imf (t) =
∞∑

j=0

aj sin(aj t). (2.6)

Indeed, by Euler’s formula and (2.1),

F cos(bj ·) = 2π

2
(δbj

+ δ−bj
), F sin(bj ·) = 2π

2 i
(δbj

− δ−bj
). (2.7)

Here multiplication by χ̂ (·/bj ) removes the contribution from δ−bj
since χ̂ vanishes

on ] − ∞,0]. This actually explains why the proof of Theorem 1.1 was saved by the
redundancy of the term eibj (t−t0).

However, the details will follow in connection with the next result. Recall that
f : R → C is said to be Lipschitz continuous at t0 if there exist two constants L > 0,
η > 0 such that |f (t) − f (t0)| ≤ L|t − t0| for every t ∈]t0 − η, t0 + η[ .

Theorem 2.1 Let f : R → C be given as f (t) = ∑∞
j=0 aj exp(ibj t) for a complex

sequence (aj )j∈N0 with
∑∞

j=0 |aj | < ∞ and 0 < bj ↗ ∞ satisfying

lim inf
j→∞

bj+1

bj

> 1, aj bj 
→ 0 for j → ∞. (2.8)

Then f is bounded and continuous on R, but nowhere differentiable. If in addition
supj |aj |bj = ∞, then f is not Lipschitz continuous at any point. The conclusions
are also valid for Ref and Imf .
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Proof Continuing from (2.5), one clearly has ake
ibkt0 = ∫

R
χ(z)f (t0 − z/bk) dz.

If f were differentiable at t0, then F(t) = (f (t0 + t) − f (t0))/t would be in L∞
(like f ), so since

∫
χ(t) dt = 0, multiplication by bk and majorised convergence

would imply

−akbke
ibkt0 =

∫

R

zχ(z)
f (t0 − z/bk) − f (t0)

−z/bk

dz −−−→
k→∞ f ′(t0) i

dχ̂

dτ
(0) = 0. (2.9)

This would entail |ak|bk → 0 for k → ∞, in contradiction of (2.8).
In addition, were f Lipschitz continuous at t0, then again F would be bounded,

so the integral in (2.9) would be uniformly bounded with respect to k, in which case
supk |ak|bk < ∞.

Finally, using (2.7) ff, one can clearly replace f in (2.4)–(2.5) by Ref or Imf if
only ak is replaced by ak/2 and ak/(2 i), respectively. E.g.,

χ̂ (τ/bk)F Imf (τ) = 2π

∞∑

j=0

χ̂ (τ/bk)
aj

2 i
(δbj

(τ ) − δ−bj
(τ )) = 2π

ak

2 i
δbk

(τ ). (2.10)

Proceeding as for f itself via variants of (2.5) and (2.9), it follows that neither Ref

nor Imf can be differentiable at some t0 ∈ R, respectively Lipschitz continuous if
supj |aj |bj = ∞. �

Clearly lim sup |aj |bj > 0 is equivalent to ajbj 
→ 0; cf. (2.8). While the former
leaves a gap to the non-Lipschitz condition, the latter is natural as termwise differen-
tiation yields

∑
ajbj e

ibj t , which cannot converge unless ajbj → 0. The conditions
(2.8) have been used repeatedly in the literature, but Theorem 2.1 should be of interest
because of the easy treatment of non-periodic f as well as of Ref , Imf .

Remark 2.2 A necessary condition for Hölder continuity of order α ∈]0,1[ follows
at once from a modification of the above argument: replacing akbk on the left-hand
side of (2.9) by akb

α
k , the resulting integral will be uniformly bounded with respect

to k since
∫ |z|α|χ(z)|dz < ∞. Hence

sup
k

|ak|bα
k < ∞ (2.11)

whenever f (t) in Theorem 2.1 is Hölder continuous of order α at a single point t0.

Example 2.3 Sequences of power type like aj = a−j and bj = bj for parameters b ≥
|a| > 1 give f (t) = ∑∞

j=0 a−j eibj t , which is covered by Theorem 2.1 as |aj |bj =
| b
a
|j ≥ 1 and

bj+1
bj

= b > 1. Therefore Theorem 2.1 contains Theorem 1.1 and extends
it to complex amplitudes.

For W(t) Remark 2.2 yields bα

a
≤ 1, i.e. α ≤ loga

logb
. In case b > a > 1, Hardy’s

proof strategy [5, p. 311] was to show that W is Hölder continuous of order α =
loga/ logb but no better (even locally); whereas for b = a > 1 it was obtained that
W(t + h) − W(t) = O(|h| log 1/|h|). So Remark 2.2 at once gives a sharp upper
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bound for the Hölder exponent of W . (This was mentioned as a difficult task in [8];
however, [1] contains a relatively short proof of the bound.) Theorem. 4.9 in Chap. II
of Zygmund’s book [21] also treats Hölder continuity of W .

Example 2.4 In the same way Theorem 2.1 covers Darboux’s function f (t) =∑∞
j=0

sin((j+1)!t)
j ! , for aj = 1/j ! and bj = (j + 1)! fulfil in particular

bj+1
bj

= j + 2 ↗
∞ and ajbj = j + 1 ↗ ∞.

Example 2.5 Setting aj = a−j for some a > 1 and defining (bj ) by b2m = a2m and
b2m+1 = (1 + a−p)a2m, it is seen directly that when the power p is so large that
1 + a−p < a2, then the sequences (aj ) and (bj ) fulfil the conditions of Theorem 2.1.

E.g., (2.8) holds as
bj+1
bj

∈ {1 + a−p, a2(1 + a−p)−1} ⊂ ]1,∞[ and ajbj ∈ {1, (1 +
a−p)/a}. Thus f (t) is nowhere differentiable in this case. If further p is so large that
1 + a2 < ap(a2 − 1) it is easily verified that b2m+1 − b2m < b2m − b2m−1 so that
(bj+1 − bj ) is not monotone increasing. E.g., if a = 5, both requirements are met by
p = 1 and the values of (bj ) are

1,
6

5
,25,30,625,750,15 625,18 750, . . . .

Clearly these frequencies have a distribution with lacunas of rather uneven size.

To elucidate the assumptions in Theorem 2.1, note that for a sequence (bj ) of
positive reals,

lim inf
bj+1

bj

> 1 ⇐⇒ lim inf
bj+1 − bj

bj

> 0

⇐⇒ ∃J, ε > 0 ∀j > J : εbj < bj+1 − bj < bj+1. (2.12)

Hence the conditions lim inf
bj+1
bj

> 1 and bj ↗ ∞ imply that bj+1 − bj → ∞ when
Theorem 2.1 applies; but the gaps bj+1 − bj need not be monotone increasing; cf.
Example 2.5.

Moreover, lim inf
bj+1
bj

> 1 implies exponential growth of the bj (as bj ≥ λj−j0bj0

when
bj+1
bj

≥ λ > 1 for j ≥ j0) so Theorem. 2.1 does not apply if bj = jq . This will
be remedied in Theorem. 3.1 ff.

3 Dilation by Differences

To escape the exponential frequency growth in Theorem 2.1, it is natural instead of
dilation by bj to use the smallest gap at frequency bj , i.e. to dilate by

�bj = min(bj − bj−1, bj+1 − bj ) (b−1 = 0). (3.1)

This requires lim�bj = ∞, that one could use as an assumption (replacing exponen-
tial growth by one of its consequences, cf. (2.12)). However, (3.2) below is weaker,
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since it only implies the existence of j1 < j2 < · · · satisfying lim�bjk
= ∞ (the �bj

are unbounded since aj → 0).

Theorem 3.1 Let f (t) = ∑∞
j=0 aj exp(ibj t) for a complex sequence (aj )j∈N0 with∑∞

j=0 |aj | < ∞ and 0 < bj ↗ ∞. When �bj in (3.1) fulfils

aj�bj 
→ 0 for j → ∞, (3.2)

then f is bounded and continuous on R, but nowhere differentiable. If in addition
supj |aj |�bj = ∞, then f is not Lipschitz continuous at any t0 ∈ R. The conclusions
are also valid for Ref and Imf .

Proof That f ∈ C(R) ∩ L∞(R) is shown as in Theorem 2.1. Let now F ψ ∈ C∞(R)

fulfil F ψ(0) = 1 and F ψ(τ) 
= 0 only for |τ | < 1/2, and take the spectral cut-off
function as

ψ̂k(τ ) = ψ̂

(
τ − bk

�bk

)
. (3.3)

Then the definition of �bk as a minimum entails

ψ̂k(τ ) 
= 0 =⇒ bk − 1

2
(bk − bk−1) < τ < bk + 1

2
(bk+1 − bk). (3.4)

Since (bj ) is increasing, the τ -interval specified here only contains bj for j = k,
whence

ψ̂k(τ )f̂ (τ ) = 2π

∞∑

j=0

aj ψ̂k(τ )δbj
(τ ) = 2πakδbk

(τ ). (3.5)

Note that by a change of variables,

ψk(t) = F −1ψ̂k(t) = 1

2π

∫

R

ei t (bk+σ�bk)ψ̂(σ )�bk dσ = (�bk)e
i tbkψ(t�bk).

(3.6)
Here the integral of the left-hand side is 0 by (3.4), so application of F −1 to (3.5)
gives,

ak(�bk)e
ibkt0 = (�bk)f ∗ ψk(t0)

=
∫

R

(f (t0 − t) − f (t0))(�bk)
2eibktψ(t�bk) dt

=
∫

R

f (t0 − z/�bk) − f (t0)

z/�bk

zψ(z)ei zbk/�bk dz. (3.7)

If f is Lipschitz continuous at t0, h �→ (f (t0 +h)−f (t0))/h is bounded, so for some
L ∈ R

sup
k

|ak|�bk ≤ sup
k

∫

R

∣∣∣∣
f (t0 − z/�bk) − f (t0)

z/�bk

∣∣∣∣ |zψ(z)|dz ≤ L

∫

R

|zψ(z)|dz < ∞.

(3.8)
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Moreover, because bk/�bk ≥ bk/(bk − bk−1) > 1,

∫

R

zψ(z)ei zbk/�bk dz = i
dψ̂

dτ
(−bk/�bk) = 0. (3.9)

So were f differentiable at t0, it would follow from (3.7) by majorised convergence
that

ak(�bk)e
i t0bk = −

∫

R

(
f (t0 − z/�bk) − f (t0)

−z/�bk

−f ′(t0)
)

zψ(z)ei zbk/�bk dz−−−→
k→∞ 0,

(3.10)
in contradiction of (3.2). Finally the same arguments apply to Ref , Imf by dividing
ak by 2 and 2 i, respectively, as in Theorem 2.1. �

Remark 3.2 If f in Theorem 3.1 is Hölder continuous of order α ∈]0,1[ at some t0,
(3.7) yields

sup
j

|aj |(�bj )
α < ∞. (3.11)

When applied to W , this gives the same result as Remark 2.2, for �bj = cbj with
c = 1−1/b > 0 as b > 1. Hence the gap growth condition (3.11) cannot be sharpened
in general.

Note that, due to the use of the extended F on S ′(R), it is clear from (3.5) that one
cannot dilate by larger quantities than �bk , so the method seems optimally exploited.

Apparently, nowhere-differentiability has not been obtained under the weak as-
sumptions of Theorem 3.1 before. Like for fθ and W , the regularity of the sum func-
tion improves when the growth of the frequencies is taken smaller, e.g., by reducing
q in the following:

Example 3.3 (Polynomial growth) For p > 1 one has uniformly continuous functions

fp,q(t) =
∞∑

j=1

exp(i tj q)

jp
, Refp,q(t), Imfp,q(t), (3.12)

that are C1 and bounded with bounded derivatives on R in case 0 < q < p − 1.
However, for q ≥ p + 1 they are nowhere differentiable according to Theorem 3.1:
(3.2) follows since by the mean value theorem the frequency gaps increase, and

lim sup j−p(jq − (j −1)q) ≥ lim supqjq−p−1(1−1/j)q−1 =
{

q, for q = p + 1,

∞, for q > p + 1.

(3.13)
Moreover, for q > p + 1 there is not Lipschitz continuity at any point.

But the functions in (3.12) are globally Hölder continuous of order α = (p − 1)/q

if only q > p−1. This results from integral comparisons that (e.g., for c = 1+1/(q −
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p + 1)) yield

|fp,q(t + h) − fp,q(t)| ≤
∑

j≤N

jq−p|h| +
∑

j>N

2j−p ≤ cNq−p+1|h| + 2

p − 1
N1−p.

(3.14)
For 0 < |h| ≤ 1

2 this is exploited for the unique N such that N ≤ |h|−1/q < N +1. For
the Hölder exponents, this is optimal among the powers |h|−θ , for clearly θ = 1/q

maximises

min(θ(p − 1),1 − θ(q − p + 1)). (3.15)

Insertion of the choice of N in (3.14) gives a C < ∞ so that for h ∈ R (as fp,q ∈ L∞)

|fp,q(t + h) − fp,q(t)| ≤ C|h|α, α = p − 1

q
. (3.16)

Since �bj < qjq−1 for q > 1, the necessary condition in Remark 3.2 is fulfilled
for α(q − 1)−p ≤ 0, leading to the upper bound α ≤ p

q−1 . So in view of (3.16) there
remains a gap for these functions.

In view of Example 3.3, it is clear that Theorem 3.1 improves Theorem 2.1 a good
deal. The condition |aj |�bj 
→ 0 in (3.2) cannot be relaxed in general, for already
for W it amounts to b ≥ a, that is equivalent to nowhere-differentiability.

However, (3.2) does not give optimal results for fp,q . E.g. the case with p = q = 2
has been completely clarified and shown to have a delicate nature, as it is known from
several investigations that the so-called Riemann function

R(t) =
∞∑

j=1

sin(πj2t)

j2
(3.17)

is differentiable with R′(t) = −1/2 exactly at t = r/s for odd integers r , s. For prop-
erties of this function the reader is referred to the paper of J. Duistermaat [3].

As fp,q is in C1(R) for every q < p − 1 when p > 1, transition to nowhere-
differentiability occurs (perhaps gradually) as q runs through the interval [p − 1,
p + 1[ . Nowhere-differentiability for q ≥ p + 1 was also mentioned for Imfp,q by
W. Luther [11] as an outcome of a very general Tauberian theorem. (In addition
Imfp,2 was covered with nowhere-differentiability for p ≤ 3/2 providing cases in
[p + 1

2 ,p +1[ ; for t irrational Luther’s result relied on Hardy’s investigation [5], that
covered Imfp,2 for p < 5/2 thus giving cases of almost nowhere differentiability in
]p − 1

2 ,p + 1
2 ] for q = 2.)

By (3.16), R is globally Hölder continuous of order α = 1/2, that is well
known [3]. At the differentiability points, this is of course not optimal, but the lo-
cal Hölder regularity of R is known to attain every value α ∈ [ 1

2 , 3
4 ] in a non-empty

set; cf. the paper of S. Jaffard [8].

Remark 3.4 Recently fp,q was studied by F. Chamizo and A. Ubis [2] for q ∈ N,
p > 1, with nowhere-differentiability treated by convolving fp,q with the Fejér ker-
nel, cf. [2, Proposition 3.3]. This method was proposed as an alternative to those of
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[11] and similar in spirit to the above proof of Theorem 3.1. But some statements
are flawed: e.g. in [2, Theorem 3.1], fp,q is claimed differentiable at an irreducible
fraction t = r/s ∈ Q, s > 0, if and only if both q < p + 1/2 and, for some maximal
prime power σγ in the factorisation of s, q divides γ − 1 but is relatively prime with
σ − 1. However, fp,q ∈ C1(R) for every q < p − 1 (cf. Example 3.3 above), whilst
for q ∈ N ∩ [2,p − 1[ their condition is violated at r

s
= 1

2q ; hence this claim is not
correct for such q .

4 Slowly Growing Frequencies

Using Theorem 3.1, nowhere-differentiability is obtained in new cases where bj is
almost O(j2). The examples to follow all relate to the limiting case p = 1, q = 2 in
Example 3.3.

Setting loga t = (log t)a for a ∈ R and t > 1, the functions

F1(t) =
∞∑

j=2

exp(i tj2 logb j)

j loga j
, ReF1(t), ImF1(t) (4.1)

are for b ≥ a > 1 continuous, bounded and nowhere differentiable on R by Theo-
rem 3.1, for the mean-value theorem gives aj�bj ≥ 2 logb−a j . For b > a > 1 there
is no Lipschitz continuity.

To simplify, the Lipschitz aspect is left out below by taking b = a. Instead iterated
logarithms will be seen to allow quasi-quadratic growth of the bj , relying on a general
result for bj = j/|aj |:

Corollary 4.1 If
∑

j>J |aj | < ∞ and |aj | ≥ |aj+1| for all j > J while for a convex
function ϕ : ]J,∞[→ R one has ϕ(j) = j/|aj | for j ∈ N∩]J,∞[ , then

f (t) =
∑

j>J

aj exp(i tj/|aj |), Ref (t), Imf (t) (4.2)

are continuous on R but nowhere differentiable.

Proof As ϕ is convex, clearly �bj = ϕ(j) − ϕ(j − 1). Therefore |aj |�bj =
|aj |( j

|aj | − j−1
|aj−1| ) ≥ j − (j − 1) = 1, and bj = j/|aj | ↗ ∞, whence Theorem 3.1

yields the claim. �

For t > e, there is a nowhere differentiable function given by

F2(t) =
∞∑

j=3

exp(i tj2 log j (log log j)a)

j log j (log log j)a
, a > 1. (4.3)

This can be seen directly from Corollary 4.1, but it is a special case of Example 4.2
below.
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Fig. 1 Graph of ImF2(t) for
the function in (4.3)

The graph of ImF2 is sketched in Fig. 1. All figures give a plot of a partial sum
with 1000 terms and partition points. The quasi-periodic behaviour visible in Fig. 1
results because the first term of the series is dominating. More pronounced cases of
slow growth are given in:

Example 4.2 Denoting the n-fold logarithm by log◦n t := log · · · log t , defined for
t > En−2 := exp · · · exp 1 (n−2 times), and setting loga◦n t = (log◦n t)a for a ∈ R and
t > En−1, there is a continuous nowhere differentiable function given for t > En−1

by

Fn(t) =
∑

j>En−1

exp(i tj2 log j · · · log◦(n−1) j · loga◦n j)

j log j · · · log◦(n−1) j · loga◦n j
, a > 1. (4.4)

Indeed,
∑ |aj | < ∞ because aj = 1/(j log j · · · log◦(n−1) j loga◦n j) equals g′(j),

whereby

g(t) = 1

1 − a
log1−a◦n t = 1

1 − a
(log · · · log t)1−a −−−→

t→∞ 0 for a > 1. (4.5)

That aj ≥ aj+1 follows since all iterated logarithms are monotone increasing and
positive for j > En−1. Analogously, ϕa,n(t) = t2 log t · · · log◦(n−1) t · loga◦n t is con-
vex on ]En−1,∞[ , for ϕ′

a,n(t) is easily written as a sum of n + 1 terms, that are
increasing. Hence Corollary 4.1 gives the claim.

ImF3 and its first term are sketched in Fig. 2 for a = 2. One has E2 = ee ≈ 15.15,
and for j ≥ 16 the frequencies are 0.28, 1.4, 3.5, 6.8, 11, 17, 25, 34, 45, 57, . . . . (As
a = 2, the sum could include e < j < ee , but the bj decrease from 11 for j = 6 to
0.009 for j = 15.)
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Fig. 2 ImF3(t) for the function
in Example 4.2, n = 3, a = 2

Fig. 3 ImF4(t) for the function
in Example 4.2, n = 4, a = 2

As a last comparison, for a = 2 and n = 4, summation begins in (4.4) after
E3 = eee = 3 814 279.1 . . . cf. Fig. 3. The quasi-quadratic growth of bj is indicated
by the fact that terms no. 1, 10, 100, 1000 have frequencies 0.02, 2.4, 247, 24 326,
respectively.
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Fig. 4 Deviation from the first
term of ImF4(t) in
Example 4.2, n = 4, a = 2

It may of course be shown analytically that, despite the larger number of j -
dependent factors, one gets slower frequency growth in Fn+p than in Fn. Figures 1,
2 and 3 indicate that as the frequency growth is reduced, there will be increasingly
larger deviations from a sinusoidal curve.

Figure 4 shows the deviation from the first term, ie the sum over j ≥ 3814281.
Notice that here the sinusoidal structure is almost completely lost, i.e. the first term
is even less dominating.

In addition to the vertical tangent at the origin in Fig. 4, there seems to be ap-
proximate self-similarities, like those for R analysed by J. Duistermaat [3]. E.g., the
behaviour for ca. 40 < t < 75 seems similar to that found for 25 < t < 40 and so on
for t → 0+.

5 Final Remarks

The first example of a nowhere differentiable function is due to B. Bolzano (ca. 1830,
discovered 1921), cf. the accounts in [7, 19]. Nowhere-differentiability was estab-
lished by means of infinite products in [20]. For a review of the historical develop-
ment of the subject the reader could consult the illustrated thesis of J. Thim [19]. Very
recently nowhere-differentiable functions were shown to enter the counter-examples
that establish the pathological properties of pseudo-differential operators of type 1,1;
cf. [9].

It has turned out that some elements of the arguments exist sporadically in the lit-
erature; cf. Remark 3.4 for comments on [2]. In particular Refθ and Imfθ , θ = 1
have been analysed by Y. Meyer [13, Chap. 9.2] with a method partly based on
wavelets and partly similar to the proof of Proposition 1.3. The method was attributed
to G. Freud but without any references.
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However, G. Freud showed in [4] that an integrable periodic function f with
Fourier series

∑
ρk sin(nkt + ϕk), infnk+1/nk > 1 is differentiable at a point only

if limρknk = 0, similarly to Theorem 2.1. His proof was based on estimates of the
differentiated Cesaro means and of the corresponding Fejér kernel (as done also in
[16]), so it applies only to periodic functions.

Whereas the purpose in [13, Chap. 9.2] was to derive the lack of differentiabil-
ity of Ref1, Imf1 with wavelet theory, the present paper goes much beyond this.
E.g., nowhere-differentiability of fθ , or W , is shown to follow directly from ba-
sic facts in integration theory; cf. the introduction. And using only F , differentia-
bility was in Theorem 2.1 linked to the growth of the frequencies bj . Finally, the
removal of the condition lim infbj+1/bj > 1 in Theorem 3.1 seems to be a nov-
elty, which yields that the growth of the frequency increments �bj is equally impor-
tant.

Acknowledgements I am grateful to Professor L. Rodino and Professor H. Cornean for asking me to
publish this work; and to an anonymous referee for pointing out the reference [1].
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