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ABSTRACT. We show that the average squared error made in using a look-up table to evaluate cosine
(where we always approximate by rounding down) is 2� − N sin(2�/N) ≈ 4�3

3N2 , where N is the
number of index points (i.e., the number of entries in the look-up table). This leads to an average
error (per angle) of approximately 2�2/3N2. Similar techniques should yield corresponding results
for using the closest look-up table angle, as well as using a linear interpolation.

1. INTRODUCTION

The goal of this note is to compute, in closed form, the error in using a look-up table in evaluating
cosine. We’ll look at the mean square deviation, dividing the interval [0, 2�) into N equal pieces.
To keep the computation simple for now, we truncate the angle � to the nearest angle in the look-up
table.

Let us denote the N values in the look-up table by �n = 2�n/N , where n ∈ {0, 1, . . . , N − 1}
(and of course �N = 2�). Thus we must compute

E(N) :=
N−1∑
n=0

∫ �n+1

�n

(cos � − cos �n)
2 d�. (1.1)

For now, we assume that any value we look up is known with complete accuracy. Our main result is

Theorem 1.1. Consider a look-up table for cosine with N entries. Assuming each value of � is
equally likely, and assuming we use simple truncation, the sum of the integral of the absolute value
of the difference squared has a nice expression:

E(N) = 2� −N sin(2�/N) ≈ 4�3

3N2
. (1.2)
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2. EVALUATING ERROR E(N)

We now determine the error E(N). We first split the integral into three pieces:

E(N) =
N−1∑
n=0

∫ �n+1

�n

(cos � − cos �n)
2 d�

=
N−1∑
n=0

∫ �n+1

�n

[
cos2 � − 2 cos �n cos � + cos2 �n

]
d�

=
N−1∑
n=0

∫ �n+1

�n

cos2 �d� − 2
N−1∑
n=0

cos �n

∫ �n+1

�n

cos �d� +
N−1∑
n=0

cos2 �n

∫ �n+1

�n

d�

=

∫ 2�

0

cos2 �d� − 2
N−1∑
n=0

cos �n (sin �n+1 − sin �n) +
2�

N

N−1∑
n=0

cos2 �n

= � +
2�

N

N−1∑
n=0

cos2 �n − 2
N−1∑
n=0

cos �n (sin �n+1 − sin �n)

= � + T2 + T3, (2.1)

where we used
∫ 2�

0
sin2 �d� =

∫ 2�

0
cos2 �d� = 1

2

∫ 2�

0
d�.

We now handle the other two terms. The sum of the cosine-squared term is readily handled. We
may extend the sum to be from−(N −1) to N −1 at the cost of halving the result after adding in the
n = 0 term, which is only counted once. We then use cos �n = (exp(j�n) + exp(−j�n))/2, where
j =
√
−1. This yields

T2 =
2�

N

N−1∑
n=0

cos2 �n

=
�

N
+
�

N

N−1∑
n=−(N−1)

cos2 �n

=
�

N
+
�

N

N−1∑
n=−(N−1)

1

4

(
e2j�n + 2 + e−2j�n

)
=

�

N
+

�

2N
(2N − 1) +

�

4N

N−1∑
n=−(N−1)

(
e4�jn/N + e−4�jn/N

)

= � +
�

2N
− �

4N

⎡⎣ N−1∑
n=−(N−1)

(exp(4�j/N))n +
N−1∑

n=−(N−1)

(exp(−4�j/N))n

⎤⎦ . (2.2)

We now have two geometric series. Note that they would vanish if we were summing from −N to
N − 1. Thus the value of the two sums is simply their ratio evaluated at −N (in other words, extend
the sum to start at −N and then subtract this added term); as each is the complex conjugate of the
other, we get simply twice the real part, so

T2 = � +
�

2N
− �

4N
[−2 cos(4�(−N)/N)] = �. (2.3)
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Numerical computations confirm this value.
We thus have

E(N) = � + � + T3 = 2� + T3. (2.4)
We now work on simplifying T3. We have

sin �n+1 = sin

(
�n +

2�

N

)
= sin �n cos

2�

N
+ cos �n sin

2�

N
; (2.5)

the advantage of this is that the cosine and sine of 2�/N is constant (for fixed N ), and note that
2�/N = �1. This implies

sin �n+1 − sin �n = (cos �1 − 1) sin �n + sin �1 cos �n. (2.6)

Thus

T3 = −2
N−1∑
n=0

cos �n (sin �n+1 − sin �n)

= −2
N−1∑
n=0

cos �n [(cos �1 − 1) sin �n + sin �1 cos �n]

= −2 (cos �1 − 1)
N−1∑
n=0

cos �n sin �n − 2 sin �1

N−1∑
n=0

cos2 �n

= − (cos �1 − 1)
N−1∑
n=0

sin(2�n)−
2N sin �1

2�

2�

N

N−1∑
n=0

cos2 �n

= − (cos �1 − 1)
N−1∑
n=0

sin(2�n)−
2N sin �1

2�
⋅ �, (2.7)

where the last follows from the fact that our sum is just T2, which we showed equals �. What about
the sum of the sine term? We can evaluate that easily by using sin � = (exp(j�) − exp(−j�))/2i.
Substituting this in and using �n = 2�n/N yields

T3 = − (cos �1 − 1)
N−1∑
n=0

exp(4�jn/N)− exp(−4�jn/N)

2i
−N sin �1

= −cos �1 − 1

2i

N−1∑
n=0

[exp(4�j/N)n − exp(−4�j/N)n]−N sin �1

= −N sin �1, (2.8)

as the two geometric series vanish.
Thus, putting all the pieces together, we have shown

E(N) = 2� −N sin �1. (2.9)

For small angles, sin � ≈ � − �3/3!. Noting �1 = 2�/N , we see

E(N) ≈ 2� −N
[
2�

N
− 8�3

3!N3
− ⋅ ⋅ ⋅

]
≈ 4�3

3N2
. (2.10)

This completes the proof of our main result. □
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Though it is not needed, we did perform some numerical evaluations of E(N) for various N ,
comparing the unsimplified sum to our expression. As was to be expected, our investigations showed
excellent agreement with the numerics.

Another item: it might be worthwhile to consider, not the quantity E(N) but instead E(N)/2�.
The reason is that E(N) is the total error, while E(N)/2� is the average error per angle. This would
give an average error of approximately 2�2/3N2.
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