NOTES ON ERROR ANALYSIS FROM LOOK-UP TABLES
STEVEN J. MILLER

ABSTRACT. We show that the average squared error made in using a look-up table to evaluate cosine

(where we always approximate by rounding down) is 2r — N sin(27/N) = :;117\}32, where N is the
number of index points (i.e., the number of entries in the look-up table). This leads to an average
error (per angle) of approximately 272 /3N2. Similar techniques should yield corresponding results

for using the closest look-up table angle, as well as using a linear interpolation.

1. INTRODUCTION

The goal of this note is to compute, in closed form, the error in using a look-up table in evaluating
cosine. We’ll look at the mean square deviation, dividing the interval [0, 27) into N equal pieces.
To keep the computation simple for now, we truncate the angle 6 to the nearest angle in the look-up
table.

Let us denote the N values in the look-up table by 6,, = 27n/N, where n € {0,1,..., N — 1}
(and of course 6 = 2m). Thus we must compute

N-1 Ont1
E(N) = Z/@ (cos O — cos 6,,) db. (1.1)
n=0 n

For now, we assume that any value we look up is known with complete accuracy. Our main result is

Theorem 1.1. Consider a look-up table for cosine with N entries. Assuming each value of 0 is
equally likely, and assuming we use simple truncation, the sum of the integral of the absolute value
of the difference squared has a nice expression:

E(N) = 27— Nsin(2r/N) ~ —. (1.2)
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2. EVALUATING ERROR E(N)

We now determine the error £/(N'). We first split the integral into three pieces:
N—

0n+1
E(N) = Z/e (cos O — cos 6,,)* db
0

3

1
-1

=

n+1
= / [0082 0 — 2cos b, cosb + cos? Gn} do
en

3
I
o

=

Oni1 N-1 0
= / cos? 0dh — 2 Z cos 6, /
en n=0 en

n=

n+1 n+1

N-1 0
cos 0db + Z cos? 6, / do
n=0 On

o

o N-1 N-1

2
— / cos? 0dh — 2 Z cos B, (sinb,1 —sinb,) + Nﬁ Z cos? 0,
0 n=0 n=0
g N1 N-1
= T+ N Z cos? 6, — 2 Z cos B, (sin 0,1 — sinb,)
n=0 n=0

where we used fo% sin® @df = 0% cos?0df = 1 OQW de.

We now handle the other two terms. The sum of the cosine-squared term is readily handled. We
may extend the sum to be from — (N — 1) to NV — 1 at the cost of halving the result after adding in the
n = 0 term, which is only counted once. We then use cos 8, = (exp(jf,) + exp(—jb,))/2, where

j = +/—1. This yields

2w 9
T = NZCOS 0,

i (€2j0" + 2+ e’2j9”)

N—-1
s m s . .
— o ON — 1 4dmjn/N —4mjn/N
v Tt It IN __%;_1) (e e

N-1 N-1
= T n§_1)<exp<4ﬂ/fv>>”+n_XU;_D@XP(—W/N»” @2

We now have two geometric series. Note that they would vanish if we were summing from —/V to
N — 1. Thus the value of the two sums is simply their ratio evaluated at — N (in other words, extend
the sum to start at —/N and then subtract this added term); as each is the complex conjugate of the
other, we get simply twice the real part, so

™ ™
T2 = 7T+ ﬁ — m [—2 COS(47T(—N)/N)} = T. (23)
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Numerical computations confirm this value.
We thus have

E(N) = n+n+T; = 21+ Ts. 2.4)
We now work on simplifying 75. We have
2 2 2
sinf,,; = sin (Gn + WW) = siné,, cos NT + cos 8, sin Nﬂ; (2.5)

the advantage of this is that the cosine and sine of 27 /N is constant (for fixed N), and note that
27 /N = 6;. This implies

sinf,,1 —sinf, = (cosf; — 1)sin6, + sin b6 cosb,. (2.6)
Thus
N-1
T3 = =2 Z cos B, (sinb,,1 —sinb,)
n=0
N-1
= -2 Z cos B, [(cos#y — 1) sin6,, + sin 6 cos 0,)]
n=0
N-1 N—-1
= —2(costh —1) Z cos B, sinf, — 2sin 6, Z cos? 0,
n=0 n=0
N-1
2N sin 91 o N
= - 0, —1 in(20,, 20,
(cosf; —1) % sin(26,,) — o Z cos
= 2N sin 6,

= —(cost; —1) Z sin(26,,) — - 2.7

2m

where the last follows from the fact that our sum is just 75, which we showed equals 7. What about
the sum of the sine term? We can evaluate that easily by using sin @ = (exp(j6) — exp(—j0))/2i.
Substituting this in and using 6,, = 27n /N yields

-y exp(4mjn/N) — exp(—4mjn/N)

N
T3 = —(cosb —1) Z

% — N sin 91
n=0
_ cos 91 1= . n .
= Z exp(4mj/N)" — exp(—4nj/N)"] — N sin 0,
n=0
= —Nsin 61, (2.8)
as the two geometric series vanish.
Thus, putting all the pieces together, we have shown
E(N) = 27 — Nsin6;. (2.9)
For small angles, sin ~ 6 — 3 /3!. Noting 6, = 27 /N, we see
2m 873 473
E(N) ~ 2n— N |— — — | B —. 2.1
(N) =~ 2m N 3IN3 3N2 2.10)

This completes the proof of our main result. O
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Though it is not needed, we did perform some numerical evaluations of E(N) for various N,
comparing the unsimplified sum to our expression. As was to be expected, our investigations showed
excellent agreement with the numerics.

Another item: it might be worthwhile to consider, not the quantity F/(/N) but instead E(N) /2.
The reason is that £/(N) is the total error, while E (V) /27 is the average error per angle. This would
give an average error of approximately 272 /3N2.
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