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Abstract

The Method of Least Squares is a procedure to determine #tdibine to data; the
proof uses calculus and linear algebra. The basic probldmfiad the best fit straight
line y = ax + b given that, forn € {1,..., N}, the pairs(x,,y,) are observed. The
method easily generalizes to finding the best fit of the form

y = a1fi(x) + -+ cx fr(x); (0.1)

it is not necessary for the functiorfs to be linearly inx — all that is needed is thatis to
be a linear combination of these functions.
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1 Description of the Problem

Often in the real world one expects to find linear relatiopshietween variables. For example,
the force of a spring linearly depends on the displacemetitetpring:y = kx (herey is
the force,z is the displacement of the spring from rest, &nid the spring constant). To test
the proposed relationship, researchers go to the lab ansumeanhat the force is for various
displacements. Thus they assemble data of the faymy,,) for n € {1,..., N}; herey, is
the observed force in Newtons when the spring is displagadeters.
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Figure 1: 100 “simulated” observations of displacementfance (: = 5).

Unfortunately, it is extremely unlikely that we will obsera perfect linear relationship.
There are two reasons for this. The firstis experimentatginie second is that the underlying
relationship may not be exactly linear, but rather only agpnately linear. (A standard
example is the force felt on a falling body. We initially apgimate the force a8’ = mg with
g the acceleration due to gravity; however, this is not qugbtras there is a resistive force
which depends on the velocity.) See Figure 1 for a simulatgd det of displacements and
forces for a spring with spring constant equabto

The Method of Least Squares is a procedure, requiring jusesmalculus and linear alge-
bra, to determine what the “best fit” line is to the data. Ofrseywe need to quantify what
we mean by “best fit”, which will require a brief review of sompebability and statistics.

A careful analysis of the proof will show that the method ipalale of great generaliza-
tions. Instead of finding the best fit line, we could find thetfgiven by anyfinite linear

combinations of specified functions. Thus the general grols given functiong, .. ., fx,
find values of coefficients,, . . ., ax such that théinear combination
Yy = a1f1($)+"‘+aKfK($) (11)

is the best approximation to the data.



2 Probability and Statistics Review

We give a quick introduction to the basic elements of proiigtzind statistics which we need
for the Method of Least Squares; for more details see [BD,eC&RI, Fe, Kel, LF, MoMc].

Given a sequence of data, . . ., ), we define thenean (or theexpected valug to be
(x1 4+ ---+ax)/N. We denote this by writing a line above thus

1 N
T = — : 2.2
P (22)
The mean is the average value of the data.

Consider the following two sequences of d&ft&d, 20, 30, 40, 50} and{30, 30, 30, 30, 30}.
Both sets have the same mean; however, the first data setdaesryrariation about the mean.
This leads to the concept of variance, which is a useful mglantify how much a set of data
fluctuates about its mean. Thariance! of {z1,...,zy}, denoted by?, is

N
1
2 -=)2.
0 = N nEZI(xi —I)%; (2.3)

thestandard deviation o, is the square root of the variance:

LN
0 =\ Z(ml —T)2 (2.4)

Note that if ther’s have units of meters then the variancehas units ofneters?, and the
standard deviation, and the meamw have units of meters. Thus it is the standard deviation
that gives a good measure of the deviations ofitlsearound their mean, as it has the same
units as our quantity of interest.

There are, of course, alternate measures one can use. ragplexane could consider

=S (z, — 7). (2.5)

Unfortunately this is a signed quantity, and large positiegiations can cancel with large
negatives. In fact, the definition of the mean immediatelplies the above is zero! This,
then, would be a terrible measure of the variability in datait is zero regardless of what the
values of the data are.

We can rectify this problem by using absolute values. Thad$eus to consider

1 N
=Y |z, — 7. (2.6)
Nn:l

1For those who know more advanced statistics, for techn@adans the correct definition of the sample
variance is to divide byv — 1 and notN.




While this has the advantage of avoiding cancellation adrer{as well as having the same
units as ther’s), the absolute value function is not a good function amedyly. It is not
differentiable. This is primarily why we consider the stardideviation (the square root of
the variance) — this will allow us to use the tools from calsul

We can now quantify what we mean by “best fit”. If we beligve: ax-+b, theny—(az+b)
should be zero. Thus given observations

{(z1,91), -, (zNv,un) ) (2.7)

we look at
{y1 — (ax1 +0), ..., ynv — (axy +b)}. (2.8)

The mean should be small (if it is a good fit), and the sum of sepuaf the terms will measure
how good of a fit we have.

We define
N

E(a,b) = Z (yn — (az, +b))>. (2.9)
n=1
Large errors are given a higher weight than smaller errars {d the squaring). Thus our pro-
cedure favors many medium sized errors over a few largeserforve used absolute values to
measure the error (see equation (2.6)), then all errors eighted equally; however, the ab-
solute value function is not differentiable, and thus tr@df calculus become inaccessible.

Remark 2.1 (Choice of how to measure errorshs the point is so important, it is worth
looking at one more time. There are three natural candidé&desse in measuring the error
between theory and observation:

N
= > (yi— (az; + 1)), (2.10)
n=1
N
= > |y — (ax; + )| (2.11)
n=1
and N
Es(a,b) = > (y; — (az; +1))*. (2.12)
n=1

The problem witt§2.10)is that the errors are signed quantities, and positive esran cancel
with negative errors. The problem wi¢R.11)is that the absolute value function is not differ-
entiable, and thus the tools and results of calculus are aiable. The problem witl2.12)

is that errors are not weighted equally: large errors are givsignificantly more weight than
smaller errors. There are thus problems with all three. Téaid, the problems wit(2.12)

is not so bad when compared to its advantages, namely thatsecannot cancel and that
calculus is available. Thus, most people typically (8&2)and measure errors by sums of
squares.



3 The Method of Least Squares

Given data{(x1, 1), - - ., (zn,yn)}, We defined the error associated to sayjng ax + b by

E(a,b) == Y (yo — (az, + 1)), (3.13)

Note that the error is a function of two variables, the unkngarametera andb.

The goal is to find values af andb that minimize the error. In multivariable calculus we
learn that this requires us to find the valuegafb) such that the gradient df with respect
to our variables (which are andb) vanishes; thus we require

OE OF
VE = (%’%) = (0,0), (3.14)
of OF OF
=0 =0 (3.15)

Note we do not have to worry about boundary pointsfaagnd |b| become large, the fit will
clearly get worse and worse. Thus we do not need to check drotinedary.
Differentiating £(a, b) yields

N

g_f = S 2y (aza + 1)) - (—22)
O Y2 () (1) (3.16)

Setting0E/0a = 0E /0b = 0 (and dividing by -2) yields
N
Z (axy,+0) -z, = 0

— (ax, + b)) = 0. (3.17)

Mz

n—l
Note we can divide both sides by -2 as it is just a constant; avmat divide byz; as that

varies withi.
We may rewrite these equations as

n=1

N ":]1\[ N
(Z xn> a+ (Z 1) b o= > (3.18)

1
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We have obtained that the valuesacodndb which minimize the error (defined in (3.13))
satisfy the following matrix equation:

PDMIEAD DAE N S Tnyn
= : (3.19)
ZnNzl Tn ZnNzl 1 b Zivzl Yn
We need a fact from linear algebra. Recall the inverse of aixndtis a matrix B such

thatAB = BA = I, wherel is the identity matrix. IfA = ( 3 ?
det A = ad — By # 0, thenA is invertible and

1 1 o —v
Al_m<—ﬁ a)' (3.20)

10 1 2
0 1 37

) is a2 x 2 matrix where

In other words AA~! = ( ) here. For example, ifl = ( ) thendet A = 1 and

A7l = ( [ ); we can check this by noting (through matrix multiplicafiomat

-3 1
(-G

We can show the matrix in (3.19) is invertible (so long as astéwo of thez,’s are
distinct), which implies

a PONIED DA WA AR
= . (3.22)
b ijzl Ln Zf@v:l 1 25:1 Yn
Denote the matrix from (3.19) by/. The determinant ob/ is

N N N N
det M = inZl—anan (3.23)
n=1 n=1 n=1 n=1

As
1 N
T = Nan, (3.24)
n=1
we find that
N
det M = Nin—(Nf)2
n=1
1 N
- N2 = 2 -2
(F34-)
1 N
o 2 —\2
= N -N;(xn—x), (3.25)



where the last equality follows from simple algebra. Thedpag as all the:,, are not equal,
det M will be non-zero and// will be invertible. Using the definition of variance, we i
the above could also be written as

det M = N?o2. (3.26)

Thus we find that, so long as ther’s are not all equal, the best fit values of: and b are
obtained by solving a linear system of equations; the solutn is given in(3.22)

We rewrite (3.22) in a simpler form. Using the inverse of thatmx and the definition of
the mean and variance, we find

a ZN InyY
1 N —Nz n=1namn
(b) - iz (e i) ( o ) 220

n=1Yn

Expanding gives

N — N
N anl LInYn — Nl’ anl Yn

N20§(
N N N
b = —NzT anl TnYn + anl 337% anl Yn
N20§(

| N

n=1

| N

ol = NZ(% — 7). (3.28)
n=1

As the formulas forw andb are so important, it is worth giving another expression for



them. We also have
N N N N
anl 1 anl LnlYn — anl Ln anl Yn
N N N N
Dot LD o1 TE = D 1 T ) e T

a =

N N N N
D o1 L0 D e Tl = D _pi 33% D n—1Yn 3.29
N N N o =N . (3.29)
Zn:1 Ln Zn:1 Lp — Zn:1 L, Zn:1 1

Remark 3.1. The formulas above farandb are reasonable, as can be seen by a unit analysis.
For example, imagine is in meters and is in seconds. Thenif = ax + b we would need
andy to have the same units (namely seconds), @atahave units seconds per meter. If we
substitute in the units for the various quantities on thdtigand side 013.28) we do see
andb have the correct units. While this is not a proof that we hastermade a mistake, it is a
great reassurance. No matter what you are studying, youldradways try unit calculations
such as this.

There are other, equivalent formulas foandb; these give the same answer, but arrange
the algebra in a slightly different sequence of steps. HEsdgnwhat we are doing is the
following: image we are given

4 = 3a+2b
5 = 2a+ 5b.
If we want to solve, we can proceed in two ways. We can use tsiedijuation to solve for

b in terms ofa and substitute in, or we can multiply the first equation by 8 #re second
equation by 2 and subtract; théerms cancel and we obtain the valuezoExplicitly,

20 = 1ba+10b
10 = 4a—+ 100,
which yields
10 = 11a,
or
a = 10/11.

Remark 3.2. The data plotted in Figure 1 was obtained by letting = 5 + .2n and then
letting y,, = 5x,, plus an error randomly drawn from a normal distribution withean zero
and standard deviatiot (n € {1,...,100}). Using these values, we find a best fit line of

y = 4.99z + .48; (3.30)
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thusa = 4.99 andb = .48. As the expected relation is= 5z, we expected a best fit value of
a of 5 andb of 0.

While our value fom is very close to the true value, our valuebdt significantly off. We
deliberately chose data of this nature to indicate the dasge using the Method of Least
Squares. Just because we kno@d is the best value for the slope ant® is the best value
for the y-intercept doesiot mean that these are good estimates of the true values. Tbe/the
needs to be supplemented with techniques which provide estonates. Thus we want to
know something like, given this data, there i9%% chance that the true value afis in
(4.96, 5.02) and the true value dfis in (—.22, 1.18); this is far more useful than just knowing
the best fit values.

If instead we used

Eps(a,b) Zm (a2 + )] (3.31)

then numerical techniques yield that the best fit value 8f5.03 and the best fit value &f

is less thanl0~!° in absolute value. The difference between these valueshaiseé from the
Method of Least Squares is in the best fit valuk(tiie least important of the two parameters),
and is due to the different ways of weighting the errors.

Exercise 3.3.Consider the observed dat, 0), (1,1), (2, 2). It should be clear that the best
fitline isy = x; this leads to zero error in all three systems of measuringrenamely(2.10)
(2.11)and (2.12) however, show that if we ug2.10)to measure the error then ling = 1
also yields zero error, and clearly this should not be thet fiebne!

Exercise 3.4.Generalize the method of least squares to find the best firgtiatb y = ax?+
bx+c (or more generally the best fit degreepolynomial toy = a,, 2™ +a,,_12™ 1+ - -+aq).

While for any real world problem, direct computation detares whether or not the re-
sulting matrix is invertible, it is nice to be able to provestleterminant is always non-zero
for the best fit line (if all ther’s are not equal).

Exercise 3.5.If the z’s are not all equal, must the determinant be non-zero forliast fit
guadratic or the best fit cubic?

Looking at our proof of the Method of Least Squares, we naeittwas not essential that
we havey = ax + b; we could have hag = af(z) + bg(z), and the arguments would have
proceeded similarly. The difference would be that we woud wbtain

Sy f@n)? Yol fwa)g () a S ooy f(@n)yn
- . (3.32)

277:1 f(zn)g(x,) 277:1 g(l’n)2 b Zivzl 9(@n)Yn

Finally, we comment briefly on a very important change of afale that allows us to use
the Method of Least Squares in many more situations than aogletexpect. Consider the
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case of a researcher trying to prove Newton’s Law of Univeégsavity, which says the force
felt by two masses:; andm, has magnitudé&m,m, /r?, wherer is the distance between the
objects. If we fix the masses, then we expect the magnitudeedbtce to be inversely pro-
portional to the distance. We may write thisias= k/r", where we believe = 2 (the value
for k£ depends ot and the product of the masses). Clearly itighat is the more important
parameter here. Unfortunately, as written, we cannot es#Mgthod of Least Squares, as one
of the unknown parameters arises non-linearly (as the exasf the separation).

We can surmount this problem by taking a logarithmic tramsfof the data. Setting
K =logk, F =log F andR = logr, the relationF' = k/r"™ becomesF = nR + K. We are
now in a situation where we can apply the Method of Least Sgpudrhe only difference from
the original problem is how we collect and process the data;our data is not the separation
between the two masses, but rather the logarithm of the agmar Arguing along these lines,
many power relations can be converted to instances whereawese the Method of Least
Squares. We thus (finally) fulfill a promise made by many higho®l math teachers years
ago: logarithms can be useful!

Exercise 3.6.Consider the generalization of the Method of Least Squaresngn (3.32)
Under what conditions is the matrix invertible?

Exercise 3.7.The method of proof generalizes further to the case when xpectsy is a
linearcombination ofi fixed functions. The functions need not be linear; all tha¢epiired
is that we have a linear combination, sayfi(z) + - - - + ax fx(x). One then determines
theaq, ..., ax that minimize the variance (the sum of squares of the ertwy)alculus and
linear algebra. Find the matrix equation that the best fitfficeents(a4, . . . , ax ) must satisfy.

Exercise 3.8.Consider the best fit line from the Method of Least Squarethesbest fit values
are given by(3.22) Is the point(z, y), wherex = % ZnNzl x, andy = Efle Yn,» ON the best
fit line? In other words, does the best fit line go through theeiage” point?

Exercise 3.9(Kepler's Third Law) Kepler’s third law states that if" is the orbital period
of a planet traveling in an elliptical orbit about the sun @mo other objects exist), then
T? = CL3, whereL is the length of the semi-major axis. | always found this telest of the
three laws; how would one be led to the right values of the egpts from observational data?
One way is through the Method of Least Squares.7Set log T, £ = log L andc = logC.
Then a relationship of the formfi* = C' L’ becomes/7T = bL + ¢, which is amenable to the
Method of Least Squares. The semi-major axis of the the &ddsadly, Pluto is no longer
considered a planet) are Mercury 0.387, Venus 0.723, Eafiid, Mars 1.524, Jupiter 5.203,
Saturn 9.539, Uranus 19.182, Neptune 30.06 (the units amera@mical units, where one
astronomical unit is 1.496.0° km); the orbital periods (in years) are 0.2408467, 0.6152®7
1.0000174, 1.8808476, 11.862615, 29.447498, 84.016846.64.79132. Using this data,
apply the Method of Least Squares to find the best fit valuesioélb in 7¢ = C'L° (note, of
course, you need to use the equation = bL + C).

Actually, as phrased above, the problem is a little indeteate for the following reason.
Imagine we havd? = 5L3 or T* = 25L% or T = /5L"° or evenT* = 625L'%. All of
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these are the same equation! In other words, we might as well make our lives easy by taking
a = 1; there really is no loss in generality in doing this. This &stynother example of how
changing our point of view can really help us. At first it lodike this is a problem involving
three unknown parameters, b and C'; howeverthere is absolutely no lossin generality in
taking a = 1; thus let us make our lives easier and just look at this specise.

For your convenience, here are the natural logarithms ofda&: the lengths of the semi-
major axes are

{—0.949331, —0.324346, 0, 0.421338, 1.64924, 2.25539, 2.95397, 3.4032}
and the natural logarithms of the periods (in years) are
{—1.42359, —0.485812, 0.0000173998, 0.631723, 2.47339, 3.38261, 4.43102, 5.10468}.

The problem asks you to find the best fit valuea ahd . In some sense this is a bit
misleading, as there are infinitely many possible valuegtierpair (a,b); however, all of
these pairs will have the samatio a/b (which Kepler says should be close to 3/2 or 1.50). It
is this ratio that is truly important. The content of Kepkmhird Law is that the square of the
period is proportional to the cube of the semi-major axise KBy numbers are the powers of
the period and the length (theand theb), not the proportionality constant. This is why | only
ask you to find the best fit valuescofnd b and notC' (or C), asC' (or C) is not as important.

If we takea = 1 then the best fit value 6fis 0.000148796, and the best fit valué of almost
1.50.

Our notes above have many different formulas to find the ktegalfiesa and b for a
relationy = ax + b. For us, we havd = ZE + g Thus, for this problem, the role affrom
before is being played bgland the role ob from before is being played tg/ Therefore if we
want to find the best fit value for the ratgofor this problem, we just use the first of the two
formulas from(3.29)
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