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Definite Integrals by Contour Integration

Many kinds of (real) definite integrals can be found using the results we have found
for contour integrals in the complex plane. This is because the values of contour
integrals can usually be written down with very little difficulty. We simply have
to locate the poles inside the contour, find the residues at these poles, and then
apply the residue theorem. The more subtle part of the job is to choose a suitable
contour integral i.e. one whose evaluation involves the definite integral required. We
illustrate these steps for a set of five types of definite integral.

Type 1 Integrals

Integrals of trigonometric functions from 0 to 2π:

I =
∫ 2π

0
(trig function)dθ

By “trig function” we mean a function of cos θ and sin θ.
The obvious way to turn this into a contour integral is to choose the unit circle as
the contour, in other words to write z = exp iθ, and integrate with respect to θ. On
the unit circle , both cos θ and sin θ can be written as simple algebraic functions of
z:

cos θ =
1

2
(z + 1/z) sin θ =

1

2i
(z − 1/z)

and making this replacement turns the trigonometric function into an algebraic
function of z whose poles can be easily found.
Example:

I =
∫ 2π

0

dθ

1 + a cos θ
where −1 < a < +1

I =
∮

1

1 + a
2
(z + 1

z
)

dz

iz
=

2

i

∮
dz

2z + az2 + a

The poles of the function being integrated lie at the roots of the equation az2 +2z +
a = 0 i.e. at the points

z± =
1

a

(
−1 ±√

1 − a2
)
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C

Z+Z-

Of the poles, only z+ lies inside the unit circle, so I = 2πiR+ where R+ is the
residue at z+ To find the residue we note that this is a simple pole and if we write
the integrand as f(z) = g(z)/h(z) the residue at z+ is:

g(z+)

h′(z+)
=

2

2i(az+ + 1)
=

1

i
√

1 − a2

Hence the integral required is 2π/
√

1 − a2

Type 2 Integrals

Integrals such as

I =
∫ +∞

−∞
f(x)dx

or, equivalently, in the case where f(x) is an even function of x

I =
∫ +∞

0
f(x)dx

can be found quite easily, by inventing a closed contour in the complex plane which
includes the required integral. The simplest choice is to close the contour by a very
large semi-circle in the upper half-plane. Suppose we use the symbol “R” for the
radius. The entire contour integral comprises the integral along the real axis from
−R to +R together with the integral along the semi-circular arc. In the limit as
R → ∞ the contribution from the straight line part approaches the required integral
I, while the curved section may in some cases vanish in the limit. Note: when we

C 1C 3

C 2

R-R

choose to split up the complete contour into sections ( C1, C2, etc.) we shall use the
notation (J1, J2, etc.) for the corresponding contour integrals. i.e.

J1 =
∫

C1

f(z)dz etc.
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Example:

I =
∫ +∞

−∞
dx

(x2 + 1)2

can be found by these methods, because the integral around the arc, which can be
written as ∫ π

0

iReiθdθ

(R2e2iθ + 1)2

R→∞−→
∫ π

0

iReiθdθ

R4e4iθ
=

i

R3

∫ π

0
e−3iθdθ

clearly vanishes as R → ∞. Once again the way is clear for us to use the residue
theorem, and inspection of the function

1

(z2 + 1)2

shows that it has poles at the roots of z2 + 1 = 0 i.e. z = ±i, of which only z = +i
lies in the upper half-plane. The order of the pole is established by noting that
(z − i)f(z)|z=i is infinite, while (z − i)2f(z)|z=i = 1

(z+i)2
= −1

4
, so the pole is of

second order.
Finally to find the residue for the pole we have to use the general formula

R =
1

(m − 1)!
lim
z→z0

dm−1

dzm−1
(z − z0)

mf(z)

where m ≥ N . Since N = 2 in this case the simplest choice is m = N = 2, giving

R = lim
z→i

d

dz

{
1

(z + i)2

}
= − i

4

Consequently I = 2πi × −i
4

= π/2

Type 3 Integrals

This class is similar to the previous one, but with a trigonometric function in-
volved in the integrand:

I =
∫ +∞

−∞
trig fn

polynomial
dx

In this case we have to take special care over the choice of the complex function, in
other words the continuation of the trigonometric function away from the real axis.
The three functions cos z , (eiz) and (e−iz) all have the same real parts on the real
axis, but are different elsewhere. In particular, when z = iR and R → ∞ the first
and last become infinite, while the second tends to zero. Consequently the meth-
ods described for Type 2 integrals will work only if we adopt the second continuation.

Example:

I =
∫ +∞

−∞
cos xdx

x2 + a2

For the reasons just described we find this by contour integration of

eiz

z2 + a2
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and since in polar coordinates eiz = eir cos θe−r sin θ the numerator tends to zero as r
becomes large everywhere in the upper half-plane where sin θ is positive. Using the
same D-shaped contour as before, the semi-circular arc contributes

∫
arc

eizdz

z2 + a2
= lim

R→∞

∫ +π

0

eiziReiθdθ

R2e2iθ + a2
= 0

So I = 2πiΣR where the sum is of the residues in the upper half-plane. The function
has simple poles at z = ±ia of which z = +ia is in the upper half-plane with residue
R = (z − ia)f(z)|z=ia = eiz

z+ia
|z=ia = − i

2a
e−a So finally, taking real parts, I = π

a
e−a.

This argument will clearly work whenever the integral around the semi-circle van-
ishes. The previous discussion shows this is true for functions of the form

f(z) =
P (z)

Q(z)
eiz

where P, Q are polynomials in z and the order of Q is at least 2 greater than that of
P , because in the limit of large R, the contribution from the arc will fall as 1/R ( or
a higher inverse power ). If, on the other hand, the order of Q is just one higher than
that of P , it is not immediately clear what will happen. However, in such cases the
exponential decrease of e−R sin θ in the upper half-plane overwhelms everything else
and the arc integral still vanishes. This fact, which we do not have time to prove
formally, is known as “Jordan’s Lemma” and it makes contour integration a useful
method for a large class of integrals, and you should know it and be ready to use it
in appropriate cases.

Type 4 Integrals

A type of integral which brings in some new ideas is similar to Type 2 but with
a pole of the integrand actually on the contour of integration. As an example of a
situation where this arises, consider the real integral

I =
∫ +∞

−∞
cos x

x
dx

The approach previously discussed would involve replacing cosx/x by eiz/z , in
which case the semi-circular arc would vanish by Jordan’s lemma. However there is
a problem, because cosx/x has a pole at the origin, and the integrand diverges as
we approach the origin along the real axis either from positive or negative values of
z. To deal with this we introduce the concept of the “Principal Value” of a definite
integral. In this we imagine that we exclude a small symmetrical range of real z
values around the pole, and take the limit as this excluded region shrinks to zero
width. We can find this by a suitable contour integral.
To do this in our example we find the contour integral of eiz/z around a contour
similar to that used above, but also involving a small semi-circular detour around
the pole at the origin: There are no poles inside this contour so the total contour
integral vanishes ( J1 + J2 + J3 + J4 = 0 ). The integral around the big semi-circle
(J2) also vanishes in the limit of large radius, and the integral along the real axis
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C 1C 3

C 2

C 4

(J3 +J1) is what we have just defined as a Principal Value in the limit as r → 0 and
R → ∞ . To find the contribution from the small semi-circle (J4) we evaluate

J4 = lim
r→0

∫ 0

−π

eireiθ
ireiθdθ

reiθ
= i

∫ 0

−π
1dθ = −πi

The vanishing of the entire contour integral yields

0 = J1 + J2 + J3 + J4 = PV
∫ +∞

−∞
eixdx

x
+ 0 − πi

So we can separate real and imaginary parts to obtain

PV
∫ +∞

−∞
cos x

x
dx = 0

∫ +∞

−∞
sin x

x
dx = π

(We have omitted the “PV” in the final integral because sin x
x

is actually finite at
x = 0.)

Type 5 Integrals

Our last type of integral will be those involving branch cuts. Far from being a
problem, these can actually make some kinds of definite integral possible because we
can make use of the discontinuity across the cut to construct the required integral.
This is best shown by an example:

Example

I =
∫ +∞

0

dx

x3 + 1

resembles Type 2, but because the integrand is not even we cannot extend the
integration to the whole real axis and then halve the result. However, suppose we
look at the contour integral

J =
∫

C

ln zdz

z3 + 1

around the contour shown. Note that this contour does not pass through the cut
onto another branch of the function. Remember that ln z = ln r + iθ + 2πin where
n is an integer distinguishing the branches of the function. On our contour we have
points just above the cut in the section C1 and points at the same x values but just
below the cut in C3. Because we stay on the same sheet (say n = 0) throughout our
contour, these values differ by 2πi. The sections C1 and C3 are described in opposite
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R
C1

C3

C2

C4

directions, so it is just the difference in the values of the integrand that contributes
to J . In the limit of large radius the contribution of C2 vanishes, as also does C4 in
the limit of small radius. There is therefore a simple connection between J and the
original definite integral I:

J = 2πiI

On the other hand we can find the value of J from the residue theorem, since
ln z/(z3 + 1) has three simple poles at the cube roots of −1 , which are eiπ/3,eiπ and
e5iπ/3. To find the residues we can use the g(z0)/h

′(z0) method, with g(z) = ln z
and h(z) = z3 + 1. This gives the values

iπ

9

(
−1

2
−

√
3

2
i

)
,
iπ

3
,
5iπ

9

(
−1

2
+

√
3

2
i

)

The sum of these is −2π/3
√

3. So by the residue theorem, J = 2πi ×
(
− 2π

3
√

3

)
and

I = 2π/3
√

3
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