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Abstract

We review some concepts from analysis, such as proofs by induction, binomial coefficients, calculus (mean value
theorem, intermediate value theorem), continuity, the Pigeon Hole Principle and lengths of sets. The notes below
are fromAn Invitation to Modern Number Thearp be published by Princeton University Press in 2006. For more

on the book, see

http://mwww.math.princeton.edu/mathlab/book/index.html

The notes below are Appendix | of the book; as such, there are often references to other parts of the book.

Notation

. W : the set of whole numberg1,2, 3,4, ... }.

N : the set of natural number$0,1,2,3,...}.

Z : the set of integersf. .., —2,—1,0,1,2,... }.

Q : the set of rational numbergzx : « = %,p, q€Z,q#0}.

R : the set of real numbers.

C : the set of complex number§z : z = = + iy, =,y € R}.

Rz, Sz : the real and imaginary parts ofc C; if z = x + iy, Rz = z andSz = .
Z/nZ : the additive group of integers med {0, 1,...,n — 1}.
(Z/nZ)* : the multiplicative group of invertible elements mad

10. F,, : the finite field withp elements{0,1,...,p — 1}.

11. a|b: a dividesb.

12. (a,b) : greatest common divisor (gcd) efandb, also writtengcd(a, b).

13. primes, composite : A positive integelis prime ifa > 1 and the only divisors of arel anda. If a > 1is
not prime, we say: is composite.

14. coprime (relatively prime) a andb are coprime (or relatively prime) if their greatest common divisdr. is
15. z =y mod n: there exists an integersuch thatr = y + an.
16. Vv : for all.

17. 3 : there exists.



18.

19.
20.
21.
22.
23.
24,
25.

26.

27.

Big-Oh notation :A(x) = O(B(xz)), read “A(x) is of order (or big-Oh)B(z)”, means3C' > 0 and anz
such thatvz > xg, |A(x)| < C B(x). This is also writtend(z) < B(x) or B(z) > A(z).

Little-Oh notation :A(z) = o(B(x)), read "A(z) is little-Oh of B(x)", meanslim,_,~, A(z)/B(x) = 0.
|S| or #S : number of elements in the s&t

p > usually a prime number.

i, J, k, m, n : usually an integer.

[z] or |x] : the greatest integer less than or equat,teead “the floor ofc”.

{z} : the fractional part of; notex = [z] + {z}.

supremum : given a sequenge, }°2 ;, the supremum of the set, denotetb,, z,,, is the smallest number
(if one exists) such that,, < ¢ for all n, and for anye > 0 there is some, such that,,, > ¢ —e. If the
sequence has finitely many terms, the supremum is the same as the maximum value.

infimum : notation as above, the infimum of a set, denatdd z,,, is the largest number (if one exists)
such thate,, > c for all n, and for anye > 0 there is somey, such thatz,,, < c + €. If the sequence has
finitely many terms, the infimum is the same as the minimum value.

O : indicates the end of a proof.



Chapter 1

Analysis Review

1.1 Proofs by Induction

Assume for each positive integemwe have a statemeiit(n) which we desire to show is trué(n) is true for all
positive integers: if the following two statements hold:

e Basis Step:P(1) is true;
¢ Inductive Step: wheneverP(n) is true,P(n + 1) is true.

This technique is calle@roof by Induction, and is a very useful method for proving results; we shall see many
instances of this in this appendix and Chaf@rindeed, throughout much of the book). The reason the method
works follows from basic logic. We assume the following two sentences are true:

P(1)is true
VYn > 1, P(n) is true impliesP(n + 1) is true. (1.2)

Setn = 1 in the second statement. A1) is true, andP(1) implies P(2), P(2) must be true. Now set = 2 in
the second statement. &X2) is true, andP(2) implies P(3), P(3) must be true. And so on, completing the proof.
Verifying the first statement thigasis stepand the second thaductive step. In verifying the inductive step, note
we assume(n) is true; this is called thanductive assumption Sometimes instead of startingrat= 1 we start
atn = 0, although in general we could start at anyand then prove for alb > ng, P(n) is true.

We give three of the more standard examples of proofs by induction, and one false example; the first example is
the most typical.

1.1.1 Sums of Integers

Let P(n) be the statement
Zk — M (1.2)
k=1

Basis StepP(1) is true, as both sides equal



Inductive StepAssumingP(n) is true, we must show(n + 1) is true. By the inductive assumptiop,;_, k =
n(n+1) Thus
o

n+1 n
Sk = (D4 Lk
k=1 k=1
1
o (n+1D(n+1+1) (1.3)
= 5 . .
Thus, givenP(n) is true, thenP(n + 1) is true.
Exercise 1.1.1.Prove
1)(2 1
ZkQ— nnt DEntl) (1.4)
6
Find a similar formula for the sum df3. See also Exercisg?.
Exercise 1.1.2.Show the sum of the firstodd numbers is?, i.e.,
> (@2k-1) (1.5)
k=1

Remark 1.1.3. We define the empty sum to be 0, and the empty product to be 1. For exﬁmg@,mo 1=0.

See [Mil4] for an alternate derivation of sums of powers that does not use induction.

1.1.2 Divisibility
Let P(n) be the statement33 divides11"+1 4 12271,

Basis StepA straightforward calculation show(1) is true: 111+ + 12271 = 121 + 12 = 133.
Inductive StepAssumeP(n) is true, i.e.,133 divides11"*! + 1227~ We must showP(n + 1) is true, or that
133 divides11(m+D+1 4 192(n+1=1 Byt

11(n+1)+1 + 122(n+1)71 11n+1+1 4 122n71+2
11 - 1171 4192 . 12271
11- 11" 4+ (133 + 11)1227 !

= 11(11"T' 4122771y 413312277 (1.6)

By the inductive assumption33 divides11”+! + 122"~1; therefore,133 divides11(»+1)+1 4 122(»+1)-1 com-
pleting the proof.

Exercise 1.1.4.Prove4 dividesl + 3271,



1.1.3 The Binomial Theorem

We prove the Binomial Theorem. First, recall that

Definition 1.1.5(Binomial Coefficients) Letn andk be integers with) < k < n. We set

(1) = mmn

Note that0! =1 and(’,z) is the number of ways to choogeobjects fromn (with order not counting).

Lemma 1.1.6. We have

(Z> - (nﬁk> @*(kﬁl

Exercise 1.1.7.Prove Lemma 1.1.6.

Theorem 1.1.8(The Binomial Theorem)For all positive integers: we have

(z+y)" = i <Z> " hyk,

k=0

Proof. We proceed by induction.
Basis StepForn = 1 we have

B - 00

Inductive StepSuppose

Then using Lemma 1.1.6 we find that

(z+y)" = @+y)(z+y)"

(z+y) zn: (Z) ahy

k=0

n
_ N\ n+l-k k n
k=0

_ n+1 - n
k=1
n+1
n+1\ .-
— Z( N )x ok k

k=0

This establishes the induction step, and hence the theorem.

n
-1

Y

)}

n—k_ k+1

n+l—k_k
Y

)-3)

+ yn+1

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)



1.1.4 False Proofs by Induction

Consider the following: leP’(n) be the statement that in any groupropeople, everyone has the same name. We
give a (false!) proof by induction thd®(n) is true for alln!

Basis StepClearly, in any group with just person, every person in the group has the same name.

Inductive StepAssumeP(n) is true, namely, in any group af people, everyone has the same name. We now
prove P(n + 1). Consider a group af + 1 people:

{1,2,3,...,n—1,n,n+1}. (1.13)

The firstn people form a group ofi people; by the inductive assumption, they all have the same name. So, the
name ofl is the same as the nameis the same as the namedf. . . is the same as the nameraf

Similarly, the last: people form a group aof people; by the inductive assumption they all have the same name.
So, the name d is the same as the namedf. .. is the same as the namerofs the same as the namerof+ 1.
Combining yields everyone has the same name! Where is the error?

If n = 4, we would have the séfl, 2, 3,4, 5}, and the two sets af people would bd 1,2, 3,4} and{2, 3, 4,5}.
We see that persor2s 3 and4 are in both sets, providing the necessary link.

What about smallen? What ifn = 1? Then our set would bgl, 2}, and the two sets af person would be
{1} and{2}; there is no overlap! The error was that we assumegs “large” in our proof ofP(n) = P(n + 1).

Exercise 1.1.9.Show the above proof th#&t(n) impliesP(n + 1) is correct forn > 2, but fails forn = 1.

Exercise 1.1.10.Similar to the above, give a false proof that any surh fteger squares is an integer square, i.e.,
23 + -+ + 22 = 2. In particular, this would prove all positive integers are squaresias- 12 + - - - + 12

Remark 1.1.11. There is no such thing &roof By Example While it is often useful to check a special case and
build intuition on how to tackle the general case, checking a few examples is not a proof. For example, because
é—i = % and % = % one might think that in dividing two digit numbers if two numbers on a diagonal are the
same one just cancels them. If that were true, t%@ahould be}I. Of course this isiot how one divides two digit

numbers!

1.2 Calculus Review

We briefly review some of the results from Differential and Integral Calculus. We recall some nofatibh=
{z : a < x < b} is the set of ale betweer: andb, includinga andb; (a,b) = {z : a < x < b} is the set of all
betweeru andb, not including the endpoints andb. For a review of continuity see 81.3.

1.2.1 Intermediate Value Theorem

Theorem 1.2.1(Intermediate Value Theorem (IVT))Let f be a continuous function di, b]. For all C between
f(a) and f(b) there exists & € [a, b] such thatf(c) = C. In other words, all intermediate values of a continuous
function are obtained.

Sketch of the proofWe proceed bypivide and Conquer. Without loss of generality, assunféa) < C' < f(b).
Let 21 be the midpoint ofa,b]. If f(x;) = C we are done. Iff(z;) < C, we look at the intervalzy,b]. If
f(z1) > C we look at the intervala, z1].



In either case, we have a new interval, calldt, b;], such thatf(a;) < C < f(b1) and the interval has
half the size ofla, b]. We continue in this manner, repeatedly taking the midpoint and looking at the appropriate
half-interval.

If any of the midpoints satisfy (z,,) = C, we are done. If no midpoint works, we divide infinitely often and
obtain a sequence of points, in intervals|a,,, b,]. This is where rigorous mathematical analysis is required (see
81.3 for a brief review, and [Rud] for complete details) to shewconverges to am € (a, b).

For eachn we havef(a,) < C < f(b,), andlim, .. |b, — a,| = 0. As f is continuous, this implies
lim, oo f(an) = lim, o f(by) = f(z) =C. O

1.2.2 Mean Value Theorem

Theorem 1.2.2(Mean Value Theorem (MVT))Let f(z) be differentiable orfa, b]. Then there exists ac (a,b)
such that

f) = fla) = f'(c) - (b —a). (1.14)

We give an interpretation of the Mean Value Theorem. f(et) represent the distance from the starting point at
time z. The average speed fromto b is the distance travelled,(b) — f(a), divided by the elapsed timé— a. As
f'(x) represents the speed at timgthe Mean Value Theorem says that there is some intermediate time at which
we are travelling at the average speed.

To prove the Mean Value Theorem, it suffices to consider the special casefiidier: f(b) = 0; this case is
known as Rolle’s Theorem:

Theorem 1.2.3(Rolle’s Theorem) Let f be differentiable orja, b], and assumef(a) = f(b) = 0. Then there
exists ac € (a, b) such thatf’(c) = 0.

Exercise 1.2.4.Show the Mean Value Theorem follows from Rolle’s Theokéint: Consider

—r——(z—a)— f(a). (1.15)

Noteh(a) = f(a) — f(a) = 0andh(b) = f(b) — (f(b) — f(a)) — f(a) = 0. The conditions of Rolle’s Theorem
are satisfied for(z), and

1) = f(a) (.16

e = o=

Proof of Rolle’s TheoremWithout loss of generality, assum(a) and f/(b) are non-zero. If either were zero
we would be done. Multiplyingf(x) by —1 if needed, we may assunmfé(a) > 0. For convenience, we assume
f/(x) is continuous This assumption simplifies the proof, but is not necessary. In all applications in this book this
assumption will be met.
Casel: f/'(b) < 0: As f'(a) > 0 and f'(b) < 0, the Intermediate Value Theorem appliedftdx) asserts
that all intermediate values are attained. A&) < 0 < f’(a), this implies the existence of@e (a,b) such that
f'(e) =0.
Case2: f'(b) > 0: f(a) = f(b) = 0, and the functiory is increasing at andb. If x is real close ta: then
f(z) > 0if 2 > a. This follows from the fact that



As f'(a) > 0, the limit is positive. As the denominator is positive for> a, the numerator must be positive. Thus
f(z) must be greater thaf{a) for suchz. Similarly f'(b) > 0 implies f(z) < f(b) = 0 for z slightly less tharb.
Therefore the functiorf (x) is positive forz slightly greater tham and negative for: slightly less tharb. If
the first derivative were always positive th¢(ir) could never be negative as it startdatt a. This can be seen by
again using the limit definition of the first derivative to show that'ifx) > 0 then the function is increasing near
Thus the first derivative cannot always be positive. Either there must be somey goit, b) such thatf’(y) = 0
(and we are then done) ¢f(y) < 0. By the Intermediate Value Theorem, @i betweenf’(a) (which is positive)
andf’(y) (which is negative), there is somec (a,y) C [a, b] such thatf’(c) = 0. O

1.2.3 Taylor Series

Using the Mean Value Theorem we prove a version ofitfiéraylor Series Approximation: if f is differentiable
at leastn + 1 times onla, b], then for allz € [a,b], f(z) = >}_, f(k;!(“) (r — a)* plus an error that is at most
maXg<e<e |f(n+1)(c)| : |JI - a|n+1_

Assumingf is differentiablen + 1 times on[a, b], we apply the Mean Value Theorem multiple times to bound
the error betweerf(x) and its Taylor Approximations. Let

"R (g
ey = 3Py
k=0 ’
Mw) = f@) - fa). (118

fn(z) is then™ Taylor Series Approximation tg(z). Note f,(z) is a polynomial of degree and its firstn

derivatives agree with the derivatives pfz) atz = 0. We want to boundh(z)| for = € [a, b]. Without loss of
generality (basically, for notational convenience), we may assurme0. Thush(0) = 0. Applying the Mean
Value Theorem ta yields

h(z) = h(z)—h(0)
= h'(c1) - (z—0) withe €0,2]

= (fer) = folea)) =

_ : ~ f®(0) 1

= <f (Cl) - 2 k' k(Cl — O)k ) X

I ~ fB0)

- (- EER)-

= hl(Cl)ZE. (119)



We now apply the Mean Value Theorem/to(u). Note thath, (0) = 0. Therefore

hl(Cl) = hl(cl) — hl(O)
= hi(c2)-(c1 —0) withee € [0,¢1] C [0, ]
(f"(e2) = frl(c2)) ex

n (k)
= (f"(@) - ZQ (f _(S))! (b —1)(e2 — 0)'“2) ¢

= ha(c2)er. (1.20)
Therefore,
h(z) = f(x) — fu(z) = ha(e2)arz, c1,¢2 € [0,x]. (1.21)
Proceeding in this way a total aeftimes yields
hz) = (f(”)(cn) - f<”>(0)) Cn1Cn_z - C2C1. (1.22)

Applying the Mean Value Theorem ™ (c,,) — £ (0) gives f Y (¢, 1) - (¢, — 0). Thus

h(l’) = f(.’L') _fn<x) = f(n+1)(cn+1)cn"'clmv Ci € [va] (123)
Therefore
\h(@)] = |f(x) = ful@)] < Mpga]a["*! (1.24)
where
M, 1 = max [f™+(e)). (1.25)
c€[0,z]

Thus if f is differentiablen + 1 times then the:'" Taylor Series Approximation t¢(z) is correct within a multiple
of |z|"*1; further, the multiple is bounded by the maximum valug'6f1) on [0, z].

Exercise 1.2.5.Prove(1.22)by induction.

Exercise 1.2.6.Calculate the first few terms of the Taylor series expansiofisodicos(z), sin(x), e*, and2x3 —
x + 3. Calculate the Taylor series expansions of the above functions-at. Hint: There is a fast way to do this.

Exercise 1.2.{Advanced) Showall the Taylor coefficients for

e V# ita 0
flz) = {O 0 (1.26)

expanded about the origin vanish. What does this imply about the uniqueness of a Taylor series exydasion?
ing: be careful differentiating at zero. More is strangely true. Borel showed thiat,j} is any sequence of real
numbers then there exists an infinitely differentigbkuch thatyn > 0, f)(0) = a,, (for a constructive proof see
[GG]). Ponder the Taylor series from, = (n!)2.



1.2.4 Advanced Calculus Theorems

For the convenience of the reader we record exact statements of several standard results from advanced calculus
that are used at various points of the text.

Theorem 1.2.8(Fubini). Assumef is continuous and

b d
// |f(z,y)|dedy < oc. (1.27)

' df(a:,y)dy P bf(x,y)d:z: dy. (1.28)
L1/ Al

Similar statements hold if we instead have

Then

N: M

3 / Fem)dy, S S Fanym). (1.29)

n=Np n=No m=My

For a proof in special cases, see [BL, VG]; an advanced, complete proof is given in [Fol]. See Exefoise
an example where the orders of integration cannot be changed.

Theorem 1.2.9(Green’s Theorem)LetC' be a simply closed, piecewise-smooth curve in the plane, oriented clock-
wise, bounding a regio®. If P(x,y) andQ(z, y) have continuous partial derivatives on some open set containing

D, then 00 9
P
/CP(;U y)dz + Q(z,y)d // ( — y) dxdy. (1.30)

For a proof, see [Rud], Theorem 9.50 as well as [BL, La5, VG].

Exercise 1.2.10.Prove Green’s Theorem. Show it is enough to prove the theorer farrectangle, which is
readily checked.

Theorem 1.2.11(Change of Variables)Let V and W be bounded open setsRi*. Leth : V — W be a 1-1 and
onto map, given by
h(uy, ... up) = (hi(ug, ..o tn)s. oy hn(ur, ... up)). (1.31)

Let f : W — R be a continuous, bounded function. Then

/.../Wf(xl,...,xn)d:cl-~-d$n

= / . / f(h(ur, ... un)) J(ug, .. uy)dug - - duy,. (1.32)
%
whereJ is theJacobian
E)hl ... 6h1
Ouy Oun,
J = : : (1.33)
dhy, ... Ohy
Bul aun

For a proof, see [La5, Rud].



1.3 Convergence and Continuity

We recall some needed definitions and results from real analysis. See [Rud] for more details.

Definition 1.3.1(Convergence)A sequencéx,, }°° , converges ta: if given anye > 0 there exists aV (possibly
depending or) such that for alln > N, |x,, — 2| < e. We often write:,, — «.

. - 2
Exercise 1.3.2.If z,, = ,szH provezx,, — 3.

Exercise 1.3.3.If {z,,} converges, show it converges to a unique number.

x

generalize this to fing™ roots? This formula can be derived by Newton’s Method (9% §

Exercise 1.3.4.Leta > 0 and setx,.1 = % (xn + &>. If o = a, provez, converges to/«. Can you

Definition 1.3.5 (Continuity). A function f is continuous at a point, if given ane > 0 there exists & > 0
(possibly depending of) such that iflz — 2| < § then|f(z) — f(zo)| < e.

Definition 1.3.6 (Uniform Continuity) A continuous function is uniformly continuous if givenean 0 there exists
aé > 0such thafx — y| < ¢ implies|f(z) — f(y)| < e. Note that the sam&works for allz.

Usually we will work with functions that are uniformly continuous on some fixed, finite interval.
Theorem 1.3.7. Any continuous function on a closed, finite interval is uniformly continuous.

Exercise 1.3.8.Showz? is uniformly continuous o, b] for —co < a < b < oo. Show% is not uniformly
continuous or{0, 1), even though it is continuous. Shetis not uniformly continuous off), o).

Exercise 1.3.9.Show the sum or product of two uniformly continuous functions is uniformly continuous. In partic-
ular, show any finite polynomial is uniformly continuous|arb|.

We sketch a proof of Theorem 1.3.7. We first prove

Theorem 1.3.10(Bolzano-Weierstrass)Let {z,, }° ; be a sequence in a finite closed interval. Then there is a
subsequencér,, }7° , such thate,, converges.

Sketch the proofWithout loss of generality, assume the finite closed intervi,i$]. We proceed by divide and
conquer. Consider the two intervalls = [0, 1] and I = [, 1]. At least one of these (possibly both) must have
infinitely many points of the original sequence as otherwise there would only be finitely manin the original
sequence. Choose a subinterval (gaywith infinitely manyz,,’s, and choose any element of the sequence in that
interval to bez,,, .

Consider alle,, with n > ny. Divide I, into two subintervald,,; and/,. as before (each will be half the length
of I,). Again, at least one subinterval must contain infinitely many terms of the original sequence. Choose such a
subinterval, say,;, and choose any element of the sequence in that intervaldg b@oten, > n,). We continue
in this manner, obtaining a sequenge,, }. Fork > K, z,, is in an interval of size;. We we leave it as an
exercise to the reader to show how this implies there is smch thatc,,, — z. O

Proof of Theorem 1.3.7If f(x) is not uniformly continuous, givea> 0 for eachd = Zi there exist points;,, and
Yp With |z, — yn| < 5 and|f(z,) — f(yn)| > €. By the Bolzano-Weierstrass Theorem, we construct sequences

Ty, — & andynkj — y. One can show = y, and|f(a:nkj) — f(ynkj )| > e violates the continuity of atxz. O

Exercise 1.3.11.Fill in the details of the above proof.



Definition 1.3.12(Bounded) We sayf(z) is bounded (byB) if for all = in the domain off, | f(x)| < B.
Theorem 1.3.13.Let f(z) be uniformly continuous ofa, b]. Thenf(z) is bounded.

Exercise 1.3.14.Prove the above theorem. Hint: Given> 0, divide[a, b] into intervals of length.

1.4 Dirichlet’'s Pigeon-Hole Principle

Theorem 1.4.1(Dirichlet’'s Pigeon-Hole Principle)Let A;, A,, ..., A, be a collection of sets with the property
thatA; U---U A,, has at least: + 1 elements. Then at least one of the s&tdas at least two elements.

This is called the Pigeon-Hole Principle for the following reasom: if 1 pigeons go ta: holes, at least one of
the holes must be occupied by at least two pigeons. Equivalently, if we distfilmbigects inn boxes andc > n,
one of the boxes contains at least two objects. The Pigeon-Hole Principle is also known as the Box Principle. One
application of the Pigeon-Hole Principle is to find good rational approximations to irrational numbers (see Theorem
??). We give some examples to illustrate the method.

Example 1.4.2.1f we choose a subsétfrom the sef1,2,...,2n} with |S| = n + 1, thenS contains at least two
elements, b with ab.

Write each element € S ass = 275y with sy odd. There ares odd numbers in the séfl,2,...,2n}, and
as the seb hasn + 1 elements, the Pigeon-Hole Principle implies that there are at least two elemé&mtih the
same odd part; the result is now immediate.

Exercise 1.4.3.1f we chooses5 numbers from{1,2,3,...,100} then among the chosen numbers there are two
whose difference is ten (from [Ma]).

Exercise 1.4.4.Letay,...,a,41 be distinct integers if1, ..., 2n}. Prove two of them add to a number divisible
by 2n.

Exercise 1.4.5.Letaq, ..., a, be integers. Prove there is a subset whose sum is divisible by

Example 1.4.6.Let{a1, as, as, as, as} be distinct real numbers. There are indidgeg with0 < a, —a; < 1+a;a;.

As the functiontan : (-7, %) — R is surjective, there are anglésc (-5, 5) with a; = tan6;, 1 < i < 5.
Divide the interval(— 7, 7) into four equal pieces, each of lengfh As we have five angles, at least two of them
must lie in the same small interval, implying that there arewith 0 < 6; — 6; < %. Applying tan to the last
inequality and using the identity
tanx — tany

tan(z —y) = (1.34)

1+ tanztany
gives the result.

Exercise 1.4.7.Let ¢, @9, ..., ¢k be angles. Then for aryy> 0 there are infinitely many. € N such that

K
K = cos(ngy)| < e (1.35)
j=1
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1.5 Measures and Length

We discuss sizes of subsets[@f1]. It is natural to define the length of an intenJak= [a, b] (or [a, b) and so on) as
b — a. We denote this byI|, and refer to this as tHength or measureof I. Our definition implies a point has
zero length. What about more exotic sets, such as the rationals and the irrationals? What are the measures of these
sets? A proper explanation is given by measure theory (see [La5, Rud]); we introduce enough for our purposes. We
assume the reader is familiar with countable sets (see Chzter

Let I be a countable union of disjoint intervals C [0, 1); thusl, N I,,, is empty ifn # m. It is natural (but
see ®?as a warning for howmatural statements are often wrong) to say

11| = > |- (1.36)

It is important to take a countable union. Consider an uncountable union/with {«} for € [0,1]. As each
singleton{z} has length zero, we expect their union to also have length zero; however, their uftioh isvhich
has length 1. IfA C B, itis natural to sayA| (the length ofA) is at most B| (the length ofB). Note our definition
implies|a, b) and]a, b] have the same length.

1.5.1 Measure of the Rationals

Our assumptions imply that the rationalg@1] have zero length (hence the irrationald(nl] have length 1).

Theorem 1.5.1. The rationalsQ have zero measure.

Sketch of the proofwe claim it suffices to show) = Q N [0, 1] has measure zero. To proM@| = 0 we show that
given anye > 0 we can find a countable set of intervdjssuch that

1. Q| C Upnly;
2.5 || <e

As the rationals are countable, we can enumetgateay = {z,}52,. For each: let

€ € €
I, = |z, — . n } I, = . 1.37
g St el = o (1.37)
Clearly@ c U, I,,. The intervaldl,, are not necessarily disjoint, but
‘Un1n| S Z ‘In| = €, (138)
which completes the proof. O

Exercise 1.5.2.Show that if) = QN [0, 1] has measure zero, thé€hhas measure zero.
Exercise 1.5.3.Show any countable set has measure zero; in particular, the algebraic numbers have length zero.

Definition 1.5.4 (Almost all). Let A° be the complimentof C R: A = {x : « ¢ A}. If A°is of measure zero,
we say almost alk: are in A.

Thus the above theorem shows that not only are almost all real numbers are irrational but almost all real numbers
are transcendental.

11



1.5.2 Measure of the Cantor Set

The Cantor set is a fascinating subsef®fl]. We construct it in stages. Lél, = [0, 1]. We remove the middle
third of C;y and obtainC; = [0, ] U [2,1]. NoteC} is a union of two closed intervals (we keep all endpoints). To
construct’; we remove the middle third of all remaining intervals and obtain

1 2 3 6 7 8
- sVl s Ul sl Ul (139
We continue this process. Natg, is the union o™ closed intervals, each of side ™, and

CoDCy DCy D - (140)
Definition 1.5.5(Cantor Set) The Cantor se€ is defined by

= ﬂ Cp, = {zeR:Vn,xeCy}. (1.41)

n=1
Exercise 1.5.6.Show the length of the Cantor set is zero.

If = is an endpoint of”,, for somen, thenxz € C. At first, one might expect that these are the only points,
especially as the Cantor set has length zero.

Exercise 1.5.7.Showi and% are in C, but neither is an endpointHint: Proceed by induction. To construct
C,+1 from C,,, we removed the middle third of intervals. For each sub-interval, what is left looks like the union of
two pieces, each one-third the length of the previous. Thus, we have shrinking maps fixing the left and right parts

L,R:R — RgivenbyL(z) = £ andR(z) = 12, andCpq1 = R(Cy) + L(Ch).

Exercise 1.5.8.Show the Cantor set is also the set of all numhers [0, 1] which have nd’s in their base three
expansion. For rationals such als we may write these by using repeating %s:: .02222 ... in base three. By
considering base two expansions, show there is a one-to-one and onto mdp,ftdto the Cantor set.

Exercise 1.5.9From the American Mathematical Monthly)se the previous exercise to show that every [0, 2]
can be written as a sum+ z withy, z € C.

Remark 1.5.10. The above exercises show the Cantor set is uncountable and is in a simple correspondence to all
of [0, 1], butit has length zero! Thus, the notion of “length” is different than the notion of “cardinality”: two sets
can have the same cardinality but very different lengths.

Exercise 1.5.11(Fat Cantor Sets)Instead of removing the middle third in each step, remove the mididlds
there a choice ofn which yields a set of positive length? What if at stagee remove the mlddleL For What
sequences,, are we left with a set of positive length? If thg are digits of a simple continued fract|0n what do
you expect to be true for “most” such numbers?

For more on the Cantor set, including dynamical interpretations, see [Dav, Edg, Fal, SS3].

1.6 Inequalities
The first inequality we mention here is the Arithmetic Mean and Geometrically Mean Inequality (AM-GM) ; see

[Mil3] for some proofs. For positive numbets, . . ., a,, the arithmetic mean |%% and the geometric mean
is v/ai - an.

12



Theorem 1.6.1(AM-GM). Letay,...,a, be positive real numbers. Then

vy a, < M7 (1.42)

B n
with equality if and only ity; = - - - = ay,.

Exercise 1.6.2.Prove the AM-GM when = 2. Hint: For z € R, 22 > 0; this is one of the most useful inequalities
in mathematics. We will see it again when we prove the Cauchy-Schwartz inequality.

Exercise 1.6.3.Prove the AM-GM using mathematical induction.

There is an interesting generalization of the AM-GM; AM-GM is the gase- - - - = p,, = % of the following
theorem.
Theorem 1.6.4.Letay,...,a, be as above, and let, ..., p, be positive real numbers. SBt=p, + --- + p,,.
Then ,
oy < (Rt @4
P
and equality holds ifand only if; = - - - = a,,.

This inequality is in turn a special case of the following important theorem:

Theorem 1.6.5Jensen’s Inequality)Let f be a real continuous function da, b] with continuous second derivative
on (a,b). Suppose that”(z) < 0 forall x € (a,b). Then foray,...,a, € [a,b] andp,...,p, positive real
numbers, we have

f (p1a1+-~-+pnan) < prf(ar) + -+ puflan) (1.44)

P11+ -+ pn pr+--+pn

Exercise 1.6.6.Prove Jensen’s inequalitydint: Draw a picture; carefully examine the case= 2, p; = ps = %
What does”’ () < 0 mean in geometric terms?

Exercise 1.6.7.Investigate the cases where Jensen’s inequality is an equality.

Exercise 1.6.8.Show that Jensen’s inequality implies the AM-GM and its generalization Theorem Hhd.
Examine the functiotf(z) = —logz, > 0.

Our final inequality is th&Cauchy-Schwarz inequality. There are a number of inequalities that are referred to
as the Cauchy-Schwarz inequality. A useful version is the following:

Lemma 1.6.9(Cauchy-Schwarz)For complex valued functiongandg,

/ @@l < (/ 1 |f(x)|2da;>; (/ 1 |g(g[;>|2dgg)é . (1.45)

Proof. For notational simplicity, assumgandg are non-negative functions. Working witfi| and|g| we see there
is no harm in the above assumption. As the proof is immediate if either of the integrals on the right hand side of
(1.45) is zero or infinity, we assume both integrals are non-zero and finite. Let

_ Jo f@)g@ds

h(z)= f(x)— Ag(z), A
(x) = flz) ~ Aglx) e

(1.46)
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As fol h(z)?dz > 0 we have

0 < /(f() Mg(a))? de

1
/f d;z:f2/\/f dx+/\2/0 g(x)%dx
1 o (f x)g(x dx) (fl f(x)g(w)dm)2
- /0 f(2)2de — 232 A

fo x)2dx fol g(x)2dx
- / f(z fo ) . (1.47)
fo x)2dx
This implies
(s o)) /lf( 12d (148)
x)“dx, .
folg(x)2d;l: 0
or equivalently
1 2 1 1
([ swor) < [ erar [ gwian (1.49)
Taking square-roots completes the proof. O

Again, note that both the AG-GM and the Cauchy-Schwartz inequalities are clever applications df for
z e R.

Exercise 1.6.10.For what f andg is the Cauchy-Schwarz Inequality an equality?
Exercise 1.6.11.0ne can also prove the Cauchy-Schwartz inequality as follows: considgr= af(x) + bg(x)

wherea = \/ [} | f(«)|2dz andb = 1/ [ |g(x)[2dz and integrate/(z)2.

Remark 1.6.12. The Cauchy-Schwarz Inequality is often useful wiar) = 1. In this special case, it is important
that we integrate over a finite interval.

Exercise 1.6.13.Supposeu,...,a, andby,...,b, are two sequences of real numbers. Prove the following
Cauchy-Schwarz inequality:

la1by + asbo + -+ + anbn| < (2 +...a2)2 (b2 + -+ b2)3. (1.50)

Exercise 1.6.14.Let f,g : R — C be such thatf, | f(2)[*dz, [, |g(z)|*dz < co. Prove the following Cauchy-

Schwarz inequality:
o) 2
[ @t

< [ l@Pa [ g (L51)

—0o0 —0o0
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