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Abstract

Using just the Mean Value Theorem, we prove the nth Taylor Series
Approximation. Namely, if f is differentiable at least n + 1 times on
[a, b], then ∀x ∈ [a, b], f(x) =

∑n
k=0

f(k)(a)
k! (x − a)k plus an error that

is at most maxa≤c≤x |f (n+1)(c)| · |x− a|n+1.

1 Mean Value Theorem

Let h(x) be differentiable on [a, b], with continuous derivative. Then

h(b)− h(a) = h′(c) · (b− a), c ∈ [a, b]. (1)

The MVT follows immediately from the Intermediate Value Theorem:
Let f be a continuous function on [a, b]. ∀C between f(a) and f(b), ∃c ∈ [a, b]
such that f(c) = C. In other words, all intermediate values of a continuous
function are obtained. We will sketch a proof later.

2 Notation

[a, b] = {x : a ≤ x ≤ b}. IE, [a, b] is all x between a and b, including a and
b. (a, b) = {x : a < x < b}. IE, (a, b) is all x between a and b, not including
the endpoints a and b.
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3 Taylor Series

Assuming f is differentiable n+1 times on [a, b], we apply the MVT multiple
times to bound the error between f(x) and its Taylor Approximations.

Let

fn(x) =
n∑

k=0

f (k)(a)
k!

(x− a)k

h(x) = f(x)− fn(x). (2)

fn(x) is the nth Taylor Series Approximation to f(x). Note fn(x) is a
polynomial of degree n.

We want to bound |h(x)| for x ∈ [a, b]. Without loss of generality (basi-
cally, for notational convenience), we may assume a = 0 and f(a) = 0.

Thus, h(0) = 0. Applying the MVT to h yields

h(x) = h(x)− h(0)
= h′(c1) · (x− 0)

=
(
f ′(c1)− f ′n(c1)

)
x

=
(
f ′(c1)−

n∑
k=1

f (k)(0)
k!

· k(c1 − 0)k−1
)
x

=
(
f ′(c1)−

n∑
k=1

f (k)(0)
(k − 1)!

ck−1
1

)
x

= h1(c1)x. (3)

We now apply the MVT to h1(u). Note that h1(0) = 0. Therefore

h1(c1) = h1(c1)− h1(0)
= h′1(c2) · (c1 − 0)

=
(
f ′′(c2)− f ′′n(c2)

)
c1

=
(
f ′′(c2)−

n∑
k=2

f (k)(0)
(k − 1)!

· (k − 1)(c2 − 0)k−2
)
c1

=
(
f ′′(c2)−

n∑
k=2

f (k)(0)
(k − 2)!

ck−2
2

)
c1

= h2(c1)c1. (4)

2



Therefore,

h(x) = f(x)− fn(x) = h2(c2)c1x, c2 ∈ [0, c1], c1 ∈ [0, x]. (5)

Proceeding in this way a total of n times yields

h(x) =
(
f (n)(cn)− f (n)(0)

)
cn−1cn−2 · · · c2c1x. (6)

Applying the MVT to f (n)(cn) − f (n)(0) gives f (n+1)(cn+1) · (cn − 0).
Thus,

h(x) = f(x)− fn(x) = f (n+1)(cn+1)cn · · · c1x, ci ∈ [0, x]. (7)

Therefore

|h(x)| = |f(x)− fn(x)| = Mn+1|x|n+1, Mn+1 = max
c∈[0,x]

|f (n+1)(c)|. (8)

Thus, if f is differentiable n + 1 times, the nth Taylor Series Approxi-
mation to f(x) is correct within a multiple of |x|n+1; further, the multiple
is bounded by the maximum value of f (n+1) on [0, x].

4 Sketch of Proof of the MVT

The MVT follows from Rolle’s Theorem: Let f be differentiable on [a, b], and
assume f(a) = f(b) = 0. Then there exists a c ∈ [a, b] such that f ′(c) = 0.

Why? Assume Rolle’s Theorem. Consider the function

h(x) = f(x)− f(b)− f(a)
b− a

(x− a)− f(a). (9)

.
Note h(a) = f(a)− f(a) = 0 and h(b) = f(b)− (f(b)− f(a))− f(a) = 0.

Thus, the conditions of Rolle’s Theorem are satisfied for h(x), and there is
some c ∈ [a, b] such that h′(c) = 0. But

h′(c) = f ′(c)− f(b)− f(a)
b− a

. (10)
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Rewriting yields f(b)− f(a) = f ′(c) · (b− a).
Thus, it is sufficient to prove Rolle’s Theorem to prove the MVT.
Without loss of generality, assume f ′(a) and f ′(b) are non-zero. If either

were zero, we would be done.
Multiplying f(x) by −1 if needed, we may assume f ′(a) > 0.

Case 1: f ′(b) < 0: As f ′(a) > 0 and f ′(b) < 0, the Intermediate Value
Theorem, applied to f ′(x), asserts that all intermediate values are attained.
As f ′(b) < 0 < f ′(a), this implies the existence of a c ∈ (a, b) such that
f ′(c) = 0.

Case 2: f ′(b) > 0: f(a) = f(b) = 0, and the function f is increasing at
a and b. If x is real close to a, then f(x) > 0 because f ′(a) > 0.

This follows from the fact that

f ′(0) = lim
x→0

f(x)− f(0)
x

. (11)

As f ′(0) > 0, the limit is positive. As the denominator is positive for
x > 0, the numerator must be positive. Thus, f(x) must be greater than
f(0) for small x.

Similarly, f ′(b) > 0 implies f(x) < f(b) = 0 for x near b.
Therefore, the function f(x) is positive for x slightly greater than a and

negative for x slightly less than b. If the first derivative were always positive,
then f(x) could never be negative as it starts at 0 at a. This can be seen
by again using the limit definition of the first derivative to show that if
f ′(x) > 0, then the function is increasing near x. See the next section for
more details.

Thus, the first derivative cannot always be positive. Either there must
be some point y ∈ (a, b) such that f ′(y) = 0 (and we are then done!) or
f ′(y) < 0. By the IVT, as 0 is between f ′(a) (which is positive) and f ′(y)
(which is negative), there is some c ∈ (a, y) ⊂ [a, b] such that f ′(c) = 0.

5 Sign of the Derivative

As it is such an important concept, let us show that f ′(x) > 0 implies f(x)
is increasing at x. The definition of the derivative gives

f ′(x) = lim
∆x→0

f(x + ∆x)− f(x)
∆x

. (12)
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If ∆x > 0, the denominator is positive. As the limit is positive, for ∆x
sufficiently small, the numerator must be positive. Thus, ∆x positive and
small implies f(x + ∆x) > f(x).

If ∆x < 0, the denominator is negative. As the limit is positive, for ∆x
sufficiently small, the numerator must be negative. Thus, ∆x negative and
small implies f(x + ∆x) < f(x).

Therefore, if f ′(x) is positive, then f is increasing at x. Similarly we can
show if f ′(x) is negative then f is decreasing at x.

6 Intermediate Value Theorem

We have reduced all our proofs to the intuitively plausible IVT: if C is
between f(a) and f(b) for some continuous function f , then ∃c ∈ (a, b) such
that f(c) = C.

Here is a sketch of a proof using the method Divide and Conquer. With-
out loss of generality, assume f(a) < C < f(b). Let x1 be the midpoint of
[a, b]. If f(x1) = C we are done. If f(x1) < C, we look at the interval [x1, b].
If f(x1) > C we look at the interval [a, x1].

In either case, we have a new interval, call it [a1, b1], such that f(a1) <
C < f(b1), and the interval has size half that of [a, b]. Continuing in this
manner, constantly taking the midpoint and looking at the appropriate half-
interval, we see one of two things may happen.

First, we may be lucky and one of the midpoints may satisfy f(xn) = C.
In this case, we have found the desired point c.

Second, no midpoint works. Thus, we divide infinitely often, getting
a sequence of points xn. This is where rigorous mathematical analysis is
required.

We claim the sequence of points xn converge to some number X ∈ (a, b).
Clearly it can’t be an endpoint. We keep getting smaller and smaller inter-
vals (of half the size of the previous and contained in the previous) where
f(x) < C at the left endpoint, and f(x) > C at the right endpoint. By
continuity at the point X, eventually f(x) must be close to f(X) for x close
to X.

If f(X) < C, then eventually the right endpoint cannot be greater than
C; if f(X) > C, eventually the left endpoint cannot be less than C. Thus,
f(X) = C.
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