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Abstract
Using just the Mean Value Theorem, we prove the n'® Taylor Series
Approximation. Namely, if f is differentiable at least n + 1 times on
)
la,b], then Va € [a,b], f(z) = > 1, ! k,!(a) (x — a)¥ plus an error that
is at most max,<.< |f" Y (c)| - |x — a1

1 Mean Value Theorem

Let h(x) be differentiable on [a, b], with continuous derivative. Then

h(b) — h(a) = W (c)-(b—a), cE€ [a,b]. (1)

The MVT follows immediately from the Intermediate Value Theorem:
Let f be a continuous function on [a, b]. VC between f(a) and f(b), Jc € [a, b]
such that f(c¢) = C. In other words, all intermediate values of a continuous
function are obtained. We will sketch a proof later.

2 Notation

[a,b] = {x :a <z <b}. IE, [a,b] is all x between a and b, including a and
b. (a,b) ={x:a <z <b}. IE, (a,b) is all z between a and b, not including
the endpoints a and b.
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3 Taylor Series

Assuming f is differentiable n+1 times on [a, b], we apply the MVT multiple
times to bound the error between f(z) and its Taylor Approximations.
Let

n ) (g
fle) = LWy
= k!
Mo) = f@) - fulo) )

fn(x) is the n'* Taylor Series Approximation to f(z). Note f,(z) is a
polynomial of degree n.

We want to bound |h(x)| for = € [a,b]. Without loss of generality (basi-
cally, for notational convenience), we may assume a = 0 and f(a) = 0.

Thus, h(0) = 0. Applying the MVT to h yields

hz) = h(z)—h(0)

= hi(e)z. (3)
We now apply the MVT to hq(u). Note that hi(0) = 0. Therefore

hi(c1) = hi(cr) —hi(0)
= hi(e2) - (c1 —0)
= (f"(e2) = Flle2)en




Therefore,

h(z) = f(z) — fa(x) = ha(c2)erz, ca €[0,¢1], e1 € [0, z]. (5)

Proceeding in this way a total of n times yields

W) = (F™(en) = F7(0))enrenz- - c2era. (6)

Applying the MVT to f™(c,) — f™(0) gives £ (c,i1) - (cn — 0).
Thus,

Therefore

h(@)] = |f(2) = fu(@)] = Mpsalz["*, Mag1 = Jnax, ST ®)

Thus, if f is differentiable n + 1 times, the n** Taylor Series Approxi-
mation to f(x) is correct within a multiple of |z|"!; further, the multiple
is bounded by the maximum value of f(** on [0, z].

4 Sketch of Proof of the MVT

The MVT follows from Rolle’s Theorem: Let f be differentiable on [a, b], and
assume f(a) = f(b) = 0. Then there exists a ¢ € [a,b] such that f'(c) = 0.
Why? Assume Rolle’s Theorem. Consider the function

ﬁ(ﬂf—a)—f(a) (9)

Note h(a) = f(a) = f(a) = 0 and h(b) = f(b) — (f(b) = f(a)) = f(a) = 0.
Thus, the conditions of Rolle’s Theorem are satisfied for h(x), and there is
some ¢ € [a, b] such that h'(¢) = 0. But



Rewriting yields f(b) — f(a) = f'(¢) - (b—a).

Thus, it is sufficient to prove Rolle’s Theorem to prove the MV'T.

Without loss of generality, assume f’(a) and f/(b) are non-zero. If either
were zero, we would be done.

Multiplying f(x) by —1 if needed, we may assume f’(a) > 0.

Case 1: f/(b) < 0: As f'(a) > 0 and f/(b) < 0, the Intermediate Value
Theorem, applied to f’(z), asserts that all intermediate values are attained.
As f'(b) < 0 < f'(a), this implies the existence of a ¢ € (a,b) such that

f'le)=0

Case 2: f'(b) > 0: f(a) = f(b) =0, and the function f is increasing at
a and b. If x is real close to a, then f(x) > 0 because f'(a) > 0.
This follows from the fact that
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(11)

As f(0) > 0, the limit is positive. As the denominator is positive for
x > 0, the numerator must be positive. Thus, f(z) must be greater than
f(0) for small z.

Similarly, f/(b) > 0 implies f(z) < f(b) = 0 for = near b.

Therefore, the function f(x) is positive for x slightly greater than a and
negative for x slightly less than b. If the first derivative were always positive,
then f(z) could never be negative as it starts at 0 at a. This can be seen
by again using the limit definition of the first derivative to show that if
f'(z) > 0, then the function is increasing near z. See the next section for
more details.

Thus, the first derivative cannot always be positive. Either there must
be some point y € (a,b) such that f’(y) = 0 (and we are then done!) or
f'(y) < 0. By the IVT, as 0 is between f’(a) (which is positive) and f’(y)
(which is negative), there is some ¢ € (a,y) C [a, b] such that f'(c) = 0.

5 Sign of the Derivative

As it is such an important concept, let us show that f’(z) > 0 implies f(x)
is increasing at x. The definition of the derivative gives
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If Az > 0, the denominator is positive. As the limit is positive, for Ax
sufficiently small, the numerator must be positive. Thus, Ax positive and
small implies f(xz + Az) > f(z).

If Az < 0, the denominator is negative. As the limit is positive, for Az
sufficiently small, the numerator must be negative. Thus, Ax negative and
small implies f(x + Ax) < f(z).

Therefore, if f/(z) is positive, then f is increasing at z. Similarly we can
show if f’(z) is negative then f is decreasing at x.

6 Intermediate Value Theorem

We have reduced all our proofs to the intuitively plausible IVT: if C' is
between f(a) and f(b) for some continuous function f, then Jc € (a,b) such
that f(c) = C.

Here is a sketch of a proof using the method Divide and Conquer. With-
out loss of generality, assume f(a) < C' < f(b). Let x; be the midpoint of
[a,b]. If f(z1) = C we are done. If f(x;) < C, we look at the interval [z, b].
If f(z1) > C we look at the interval [a, x1].

In either case, we have a new interval, call it a1, b1], such that f(a;) <
C < f(b1), and the interval has size half that of [a,b]. Continuing in this
manner, constantly taking the midpoint and looking at the appropriate half-
interval, we see one of two things may happen.

First, we may be lucky and one of the midpoints may satisfy f(x,) = C.
In this case, we have found the desired point c.

Second, no midpoint works. Thus, we divide infinitely often, getting
a sequence of points x,. This is where rigorous mathematical analysis is
required.

We claim the sequence of points z,, converge to some number X € (a,b).
Clearly it can’t be an endpoint. We keep getting smaller and smaller inter-
vals (of half the size of the previous and contained in the previous) where
f(z) < C at the left endpoint, and f(x) > C at the right endpoint. By
continuity at the point X, eventually f(z) must be close to f(X) for x close
to X.

If f(X) < C, then eventually the right endpoint cannot be greater than
C; if f(X) > C, eventually the left endpoint cannot be less than C. Thus,

F(X) = C.



