Math 302: Solutions to Homework

Steven Miller

December 14, 2010

Abstract

Below are detailed solutions to the homework problems froathivB02
Complex Analysis (Williams College, Fall 2010, Professteveén J. Miller,
siml@williams.edu). The course homepage is

http://ww. willians. edu/ Mat hemati cs/
simller/public_htm/302

and the textbook i€omplex Analysiby Stein and Shakarchi (ISBN13: 978-

0-691-11385-2). Note to students: it's nice to include ttatesnent of the
problems, but | leave that up to youam only skimming the solutions. |
will occasionally add some comments or mention alternate &ations. If
you find an error in these notes, let me know for extra credit.
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1 Homework #1: Yuzhong (Jeff) Meng and Liyang
Zhang

Due by 10am Friday, September 17: Chapter 1: Page 24: #1abcH3, #13.

Problem: Chapter 1: #1: Describe geometrically the sets of poinits the
complex plane defined by the following relations: (&) z;| = |z — 25| where
21,22 € C; (b) 1/2 = Z; () Re(z) = 3; (d) Re(z) > ¢ (resp.,> ¢) wherec € R.

Solution: (a) Whenz; # 2z, this is the line that perpendicularly bisects the
line segment from; to z,. Whenz; = z,, this is the entire complex plane.

(b)

|z
o2 (1.1)
z 2z |z)?
So 1 _
—:z@i:2@|z|:1. (1.2)
z |22

This is the unit circle irC.

(c) This is the vertical line: = 3.

(d) This is the open half-plane to the right of the verticaéli = ¢ (or the closed
half-plane if it is>).

Problem: Chapter 1: #3: Witho = se'?, wheres > 0 andy € R, solve the
equation:” = w in C wheren is a natural number. How many solutions are there?

Solution: Notice that

w = se'¥ = 5!t e 7, (1.3)



It's worth spending a moment or two thinking what is the bdsdice for our
generic integer. Clearly is a bad choice as it is already used in the problem; as
we often use for the imaginary part, that is out too. The most natural issemn
(thoughk would be another fine choice); at all costs do notdise

Based on this relationship, we have

2 = geilet2mm) (1.4)
So,
1 2tm
2= st (1.5)
Thus, we will have: unique solutions since each choicewfc {0,1,...,n—1}

yields a different solution so long as# 0. Note thatm = n yields the same
solution asn = 0; in general, if two choices af. differ by n then they yield the
same solution, and thus it suffices to look at thepecified values af. If s = 0,
then we have only solution.

Problem: Chapter 1: #13: Suppose thatis holomorphic in an open sét.
Prove that in any one of the following cases:
(a) Ref(f) is constant;
(b) Im(f) is constant;
(c) |f] is constant;
one can conclude thdtis constant.

Solution: Let f(z) = f(x,y) = u(x,y) + iv(z,y), wherez = z + iy.
(@) Since Réf) = constant,

ou ou

5 =0 7= 0. (1.6)
By the Cauchy-Riemann equations,

ov ou

o oy 0. (1.7)
Thus, in{2, of o 5

(= 9L 0w o —
fi(z) = 5 8x+lax 04+0=0. (1.8)



Thusf(z) is constant.

(b) Since Ini f) = constant,

ov ov
5 =0 o= 0. (1.9)
By the Cauchy-Riemann equations,
ou  Ov
or "oy 0. (1.10)
Thus inQ, of o 5
(= 9L 0w o —
fi(z) = %%~ 9 +Z@x 0+0 . (1.12)

Thusf is constant.

(c) We first give a mostly correct argument; the reader shpajdattention to
find the difficulty. Sincd f| = vu? + v? is constant,

0= W :2u%+20%.
_ a(u2+v2) _ 2 ou 2 ov (112)
0= ay = Ua—y + Ua—y.
Plug in the Cauchy-Riemann equations and we get
ov ov
— +v—=0. 1.13
u&y + Vs 0 ( )
ov ov
U= 4 p=— =0. 1.14
o + U@y 0 ( )
ov  wvov
1.14 — = ——. 1.15
(1.14) = o~ w0y (1.15)
Plug (1.15) into (1.13) and we get
2 2
wAvou (1.16)
u Oy

SOu2+02:00rg—Z:O.



If u? + v? = 0, then, sinceu, v are realu = v = 0, and thusf = 0 which is
constant.
Thus we may assumé + v? equals a non-zero constant, and we may divide
by it. We multiply both sides by and find§? = 0, then by (1.15)g* = 0, and
by Cauchy-Riemanr§ = 0.
af  Ou v
=2l =i =0 1.17
/ or Ox + e 0 ( )
Thusf is constant.

Why is the above only mostly a proof? The problem is we havevesidn
by u, and need to make sure everything is well-defined. Spedyficaé need to
know thatu is never zero. We do havg = 0 except at points where = 0, but
we would need to investigate that a bit more.

Let’s return to o

0= 20 i) :2u%+20%.

Oz 1.18
= QU%Z + 21}2—;. ( )

_ O(uP4?)
O - T

Plug in the Cauchy-Riemann equations and we get
u—+v— = 0

—u— 4 v— = 0. (1.19)
Xr

u'— 4+uv— = 0
—uw—+v'— = 0. (1.20)
Adding the two yields
—+0P= = 0, (1.21)
or equivalently

(u* +v*)— = 0. (1.22)



We now argue in a similar manner as before, except now we thavé the an-
noyingw in the denominator. Ifi> + v? = 0 thenu = v = 0, else we can divide
by u? + v* and findov /9y = 0. Arguing along these lines finishes the proofl

One additional remark: we can trivially pass from resultspamtials with
respect ta to those with respect te by noting that iff = « + iv has constant
magnitude, so too dogs= i f = —v + iu, which essentially switches the roles of
u andv. Though this isn’t needed for this problem, arguments sgdhia can be
very useful.

It's worth mentioning that (a) and (b) follow immediatelymm (c). For exam-
ple, assume we know the real partfofs constant. Consider

9(z) = exp(f(z)) = exp(u(z,y)) exp(iv(z,y)).

As |g(2)| = exp(u(zx,y)), we see that the real part ¢fbeing constant implies
the functiong has constant magnitude. By part (c) this implies ¢hes constant,
which then implies thaf is constant.

2 Homework #2: Nick Arnosti and Thomas Craw-
ford

Due in my mailbox by 10am Friday, September 24: Chapter 1. Pag 24:
#16abc, #24, #25ab. Chapter 2: (#1) We proved Goursat’s thesm for tri-
angles. Assume instead we know it holds for any rectangle; pwe it holds
for any triangle. (#2) Let v be the closed curve that is the unit circle cen-
tered at the origin, oriented counter-clockwise. Computegg7 f(2)dz where
f(2) is complex conjugation (sof (x + iy) = = — iy). Repeat the problem for
fv f(2)"dz for any integer n (positive or negative), and compare this answer
to the results for fv z"dz; is your answer surprising? (#3) Prove that the four
triangles in the subdivision in the proof of Goursat’s theorem are all similar to
the original triangle. (#4) In the proof of Goursat’s theorem we assumed that
f was complex differentiable (ie, holomorphic). Would the esult still hold if
we only assumed f was continuous? If not, where does our probfeak down?



Problem: If v is a curve inC, show that/__ f(2)dz = — [ f(z)d=.
Parameterize/ by z = ¢(t) for ¢ in [a, 0], and definew(t) = g(a + b — ©).

Thenw(t) is a parameterization of~ on the intervala, ] (note thatw(a) =
g(b), w(b) = g(a)). Additionally,w’(t) = —¢'(a + b — t). It follows that

/_f(z)dz:/ f(w(t))w’(t)dt:—/ Flgla+b—1)g(a+b—t)dt.

Making the substitutiom = a + b — ¢, we get that

[ stotarv-oyaro-na = [ gy

- b
=~ [ Hew)g @i @)

But ,
- / gty (u)du = - / f(2)dz,

which proves the claim.
Problem: If ~ is a circle centered at the origin, firfg 2"dz.

We start by parameterizingby z = re®?, 0 < 0 < 2w, sodz = ire?®df. Then

2 21
/z"dz :/ r"e™ (ire')df = ir”“/ 10 qp
0 0

0

If n = —1, this isir " df = 2ri. Otherwise, we get

2w
=0.
0

n+1

2
Z-rn+1/ pin+1)0 1 r cilnt1)g
0 n+1




Problem: If ~ is a circle not containing the origin, finﬂy 2"dz.

If n # —1, the functionf(z) = 2™ has a primitive (namely%), so by
Theorem 3.3 in Chapter 1 of our boofg,f(z)dz = 0.
If n = —1, we parameterize by z = z, + re??,0 < 0 < 2w, sodz =

iredf. Then
1 27 s 10 ; 2m 0
/—dz:/ Lwdezﬁ/  —
v Z o Zotre 20 Jo 1+ e

Note that because our circle does not contain the orjgih,> , so|éei9| <
1. Thus, we can write this expression as a geometric series:

27 0 2

. . T 00
r e r ; -r .
— ﬁd& = — e’e E (—ele)kdﬁ.
20 Jo 1+ %6 20 Jo 0 20

Interchanging the sum and the integral, we see that thists ju

T k-+1 o i(k+1)0 =T k+16i(k+1)9 o
k=0 0 k=0 0

Why may we interchange? We can justify the interchange dtieetdact that
the sum of the absolute values converges.

Problem: If ~ is the unit circle centered at the origin, filfgzndz.

We start by parameterizing by z = ¢?,0 < 0 < 27, s0z = ¢ and
dz = iedf. Then

2m 2
/ Z'dz = / e " (ie”)df = i / e 104,
v 0 0

If n = 1, thisisi [" df = 2ri. Otherwise, we get



27 i(1—n)o |27
@/ —itn-nogy - T
0

1—n 0

Note that instead of doing the algebra, we could have obdéhat on the unit
circlez = 271, sofv Zdz = f7 2~"dz. Applying our work from Problem 2, we
get the answer above.

Problem: Where in the proof of Goursat’s theorem do we use the factttieat
function f is holomorphic? Is it sufficient to know thdtis continuous?

Start by recapping the main ideas behind the proof. We begawoitinually
splitting our trianglel” into smaller triangles. These triangles converge to a point
in the limit, and we called this point,. We then established the bound

\/Tf(z)dz\ g4n\/T(n) F(2)d].

Our goal was to show that this quantity tends to zere as zj.

To do this, we Taylor expandefi z) around the point, : f(z) = f(z0) +
f'(z0)(z — z0) + ¥(2)(z — 20). Note that(z — z,) divides(z), soy(z) — 0 as
Z —r 20.

f(20) + f'(20)(2 — 20)d=

T(n)

f(z)dz| <

[ -l

T(n)

The first integrand in this sum has a primitive, so the valuthisf integral is
zero. LetM,, = max ., |[¢(2)|. Then|y(2)| < M, andz — z, < diam(T'™),
Hence, the value of the second integral is at most p@rim) - diam(7™) - M,,.

Since the perimeter and diameter7df) both decay at a rate @f ", we estab-
lish the bound that [, f(z dz\ < 47"CM, for some constar@'. Hence C'M,
is an upper-bound fof [, f( (z) - 0asz — 29, M,, —» 0 as
desired.

Now let us see what happens if we don’t know tlias differentiable. Using
only continuity, we can approximatg(z) by f(z) + ¥ (2)(z — 2z). Defining
M,, as before, we can still bound our integral ©y//,,. We want to say that/,,
tends ta0, butlim,_,,, ¥ (z) = lim,_,, f(i_if(“ which may not exist iff is not
differentiable (and certainly may not tend to zero). Thhs &pproach fails.




We could also try the expressiditz) = f(z0) + ¢ (z), and then)(z) — 0 as
z — z. Unfortunately, without the factor @t — z;), our bound on [, f(z)dz|
will simply be perin{T'™) - M,, = 27"C'M,,. Thus, our bound fof [, f(z)dz|
is 4"2~"C'M,, = 2"C'M,,. Even though)M, tends to 0, the factor a2” may
overwhelm it, so this approach fails. From these attempsgams that knowing
that f was differentiable was a fairly important step in the proof.
Problem: Prove Goursat’s theorem for triangles using only the faat thholds
for rectangles.

Note that it suffices to prove that the integral along anytrighngle is zero,
since any triangle can be divided into two right trianglesdbypping an altitude.

Given aright triangle ABC, by drawing a series of rectanghssde the trian-
gle, we can reduce the desired integral to the integral adsegies of. congruent
triangles similar to ABC, each of which border the origingpbtenuse (as shown
in the figure).

zn

in

]
s

/

Sy
L

Sincef is continuous on the original triangle ABC (a compact set)kwew
that f is uniformly continuous on the region of interest.

Thus, given any > 0, there exists @ > 0 such that for any two points, y
in ABC with |z —y| < 4, | f(x) — f(y)| < e. If his the length of the hypotenuse
of ABC, choosen large enough so that the diameter of each small triarigle,
is less thary. Then for any trianglé}, and any pointz;, on that triangle write

f(z) = f(zx) + ¥(2), so that
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[ 1@z = | fe) ez = [ fed s | v

Tk
Sincef(z;) is a constant, it has a primitive, so the first integral is zéfean-
while, since any point on triangl&; is within i/n of z;, and we chose: to
be such thati/n < ¢, we know that|y(z)| = |f(2) — f(zx)| < e. Thus,
| [ ¥(2)dz| < perim(T}) - e. But perim(T;) < 3h/n, so the integral off (z)
along triangler, is at mosBhs /n. Summing over alh triangles, we see that the
integral of f(z) along the entire curve is at ma¥ic. Since this technique works
for arbitrarily smalle, this implies that the integral gf along any right triangle is
zero, proving the claim.

3 Homework #3: Carlos Dominguez, Carson Eise-
nach, David Gold

HW: Due in my mailbox by 10am Friday, October 1 (even if this isMountain

Day): Chapter 2, Page 64: #1, #8. Also do: Chapter 2: (#1) In & proof of
Liouville’s theorem we assumed f was bounded. Is it possibl® remove that
assumption? In other words, is it enough to assume thattf(z)| < g(z) for

some real-valued, non-decreasing functiog? If yes, how fast can we letf

grow? (#2) a) Find all = where the function f(z) = 1/(1 + z*) is not holomor-
phic; b) Let a, b, ¢, and d be integers such thatad — bc = 1. Find all z where
the function ¢(z) = (az + b)/(cz + d) is not holomorphic. (#3) Compute the
power series expansion of (z) = 1/(1 — z) about the point z = 1/2 (it might

help to do the next problem first, or to write 1 — z as1/2 — (z — 1/2)). (#4)
Do Chapter 1, Page 29, #18.

1. Let~; denote the straight line along the real line from Q®oy, denote the
eighth of a circle fromR to Re'T, and~; denote the line fronRe’ to 0.
Then by Cauchy’s theorem,

.2
/ e % dz=0.
Y1+72+73

11



We can calculate

R
_/ 6—22 dZ:/ e —(ei™/41)? z7r/4dt
Y3 0
. R .2
:emr/4/ 6—zt dt
0

R
= 6”/4/ cos (—t?)dt + isin (—t*) dt
0
' R
= e“r/4/ cos (t*)dt — isin (+*) dt
0

So we can calculate the Fresnel integrals by calcul%ipgy2 e~ dz, tak-
ing R — oo, dividing by ¢/4, and looking at the real and negative imagi-
nary parts. First we show the integral ovgrgoes to zero:

2 m/4 2,20
/ e *dz / e T Re' dp
72

/ 2 cos 20 do
w/4— 1/RlogR R w/4 )
— / cos 26 d¢9—|— R/ e—R cos 20 de
n/4—1/Rlog R
™ 1
<RI[Z = ~R*cos(5-mim) L R .
- ( RlogR)e e Rlog R
™ —stln(—) 1
< _R Rlog R
=3 + log R

The @ term goes to zero aB goes to infinity. So we need to show that
the first term goes to zero. Note that x > x/2 for positivex sufficiently
close to 0, sincein0 = 0 and-L sinz > 1/2 for sufficiently smallz. So
for sufficiently largeR the first term is less than or equal to

T T log R—

1
_Re_RQ'RlogR = —¢
4 4

log R

which goes to zero aB goes to infinity. So, a® — oo, the contribution
from ~, goes to zero. And we know that &— oo, fOR e dr = /7 /2.

12



So, finally,

> 9 oy VT 1

/0 cos (t )alt—zsm(t)dt——2 NI NI
V2 V21,
I

as desired.

. Sincer € R, f is holomorphic in an open circle of radiagentered at;, 0
< € < 1. And by Cauchy’s inequality,

! flle

@) <

Case 11 > 0. For some < € < 1,

2| < |z + ¢
thus,
1f(2)] <A+ |z +¢€])" < A1+ €+ |z])"

by both the given and the triangle inequality. And in Caushgequality R
is juste. So by combining results from above

N flle
(n) <
@ < =2
An!
< E—Z(l + e+ |z])
Anl!
< E—Z(1+€+|:)3|+e|:):|)’7
An!
Now let Al
En
thus,

f®(@)] < An(1+ [2])".
Case 27 < 0. Forsome < € < 1,

€2z =2 > |z| = ||

13



2.

by the reverse triangle inequality. When we rearrange tbquiality we see
that
2| = [x] — |e[ = [z] +e

Sincen is negative, our goal is to minimize (i) in order to get an upper
bound. Now, by combining our result above with the Cauchyiradity we
get that:

! !
@) < Ml < Ay
An!
< (= e+ o] - ela])”
An!
< :gu—@%yuﬂw. (3.2)
Now let Al
A, =AW g
En
thus,
f®(@)] < An(1+ [2])".
g.e.d.
. In the proof of Liouville’s theorem, we had that
B
Fel< g

whereB was an upper bound fdf. It only matters tha3 is an upper bound
for f in a disc of radiug? aboutz,, however. LetBy be the smallest upper
bound forf in a disc of radiusk aboutz,. Liouville’'s theorem still holds
if B — oo as long asBg/R — 0 for every choice of,. Alternatively,
we just needf to grow slower than linear; say (z)| is less tharC|z|' < or
C|z]/ log | z| or anything like this (for those who have seen little-oh tiots
f(z) = o(2) suffices).

(a) f is holomorphic wherever its derivative exists:

423
/ e P —

That is, whenever* # —1. This givesz = ¢'™/4, ¢¥7/4 57/4 and

Tim /4 V2 o V2, V2 V2, V2 V2 V2 V2
e /,OI’T—FTZ,—T—G—TZ, —7—72, andT—Tl

14



(b) Thead — be = 1 condition preventg from being a mostly-constant
function with an undefined value at= —d/c. (Thatis, ifad—bc = 0,
thena/c = b/d, and so the function would simply collapse to the value

ofa/c.) So

;o (cz+d)a—(az+b)c 1
9(2) = (cz +d)? ~ (cz+d)?

The function is then not holomorphic at= —d/c.

3. Just use the geometric series formula:

I 1
1—z 1/2—(2-1/2)
B 2

_1—2(z—1/2)

_ Z 2n+1 1/2
4. Letf(z) =) " an2". Then

F2) = au(zo + (= — )"

- g an Li:o (Z) (2 — z)™20" m]
_ 2(2 ~ )™ (2 an (Z) zg—M> .

The inner sum converges by the root test:
limsup {/a lim /
n—00 n—oo

where R is the radius of convergence of the original poweesédor f and
second limit is evaluated by noting< {/ (") < n™/" andlim,,_,., n™" =

:UH:Ul

15



1. Since the inner sum has the same radius of convergence asdhal
sum, z, still lies in the disc of convergence in the inner sum; hertéea
coefficients ofz — z, converge, and’ has a power series expansion about
20

4 Homework #4: Pham, Jensen, Kolglu

HW: Due in my mailbox by 10am Friday, October 8 (even if this isMountain

Day): Chapter 3, Page 103: #1, #2, #5 (this is related to the Eder trans-

form of the Cauchy density), #15d, #17a (hard). Additional: Let f(z) =
Yo capz"and g(z) = >0, b,2™ be the Laurent expansions for two
functions holomorphic everywhere except possibly at = 0. a) Find the
residues off(z) and ¢(z) at z = 0; b) Find the residue of f(z) + ¢g(z)atz = 0;

c) Find the residue of f(z)g(z) at z = 0; d) Find the residue of f(z)/g(z) at
z = 0.

4.1 Chapter 3, Exercise 1

Exercise 4.1.Using Euler’s formulasin 7z = , show that the complex
zeros okin 7z are exactly the integers, and that they are each of order 1ul@te
the residue ofm atz=necZ.

elTz _ 8 —imz

Solution: To show that the complex zeros gfi 7z are exactly the integers,

we will show thate™™*=¢"™ = ¢ if and only if z; € Z.

First prove the forward direction. We see thai>=="" = ( gives
im0 _ —imZ0 (4.1)
Sincezg = = + iy with z, y € R,
€T = 7MY, (4.2)
For complex numbers to be equivalent, their magnitudes brite same. Thus,
e ™ =¢e", (4.3)

This implies that-my = 7y, soy = 0. The angles corresponding to Equation 4.2
must be congruent modufar as well. Thus,

mr = —mr mod 2, (4.4)

16



which meansrz = 0 or . So we have
2rx  mod 27 = 0, (4.5)

which implies thatr is an integer. Thus € Z. Sincey = 0, we havez, = z,
implying z, € Z.
To prove the backward direction, considgre Z for z, even,

) ei7rz o e—iT(Z
S1N 7T 2, =
0 2
1—-1
= = 0. 4.6
21 (4.6)
Similarly for z, odd,
] 6z'7rz _ 6—i7rz
SII 7T 2, =
0 2
—1+1
_ il (4.7)
21
Thussinmzy = 0 if and only if zy € Z. So the zeros ofin 7z are exactly the

integers.
Next we must show that each zero has order 1. We refer to Timebre in

Stein and Shakarchi.

Theorem 4.2. Suppose that f is holomorphic in a connected operf)sdias a
zero at a pointy, € (2, and does not vanish identically fa. Then there exists a
neighborhood’/ C 2 of z;, a non-vanishing holomorphic function g on U, and a
unique positive integer n such thatz) = (= — zy)"g(z) forall z € U.

Sincesin 7z is analytic, take its Taylor series abayt We add zero to write
asz — zg + 29. Using properties of the sine function, we claim

sinmz = sinw(z+20—29) = sinmw(z—2zp) cosmzo+cosm(z—zg) sinwzy. (4.8)

Note this statement does require proof, but will follow fretandard properties of
the exponential function (or from analytic continuatioithie reason some work
needs to be done is that- 2z, need not be real, but the relation above does hold
whenz is real. What we are trying to do is understand the behavithrefunction
nearz, from knowledge neab (asz — z, is close to zero). This is a common trick,
but of course what makes this tractable is that we have thie adglition formula

for sine.

17



Whenz, is an integer, we always hagen 7z, = 0. If 2 is odd thencos 7z
is -1 while if zg is even it is 1. Thus for odé,,

3 5

. m ™ T
sm7rz=—ﬁ(z—zo)l%—g(z—zo)?’—5(2—20)5%—--- (4.9)
and for ever,
s 3 7°
sinz = F(z — 2t — 5(2 — 2)* + §<Z —2)° — . (4.10)

We thus see that all zeros are simple.
We now turn to finding the residue at= n for 1/sin7z. From our Taylor
expansion above, we have

1 1 1 1
= = . (4.11)

sin 7z sinm(z —n) cosmn cosmnsinm(z — n)

The problem is now solved by using the Taylor expansion & aimd the geomet-
ric series. We haveos mn = (—1)", so

1 . 1
= (_1) (Z—Z(])_§<Z_ZO)3+‘“

sin 7z

(4.12)

Note that each term in parentheses in the last line is dieidip (z — 27)?, and
thusnoneof these will contribute to the residue, which is simplyl)".

4.2 Chapter 3, Exercise 2

Exercise 4.3.Evaluate the integral

/°° dx
o Lt

18




1
1424°

Solution: Consider the functiorf(z)

1/f(2)
14 2*

z

This function has poles at

o, o o

2(%+n%)‘

(4.13)

Consider the contour of the semicircle in the upper half @lahradiusR,
denotedy. Denote the part of the contour along the real in@nd the part along
the arcy,. Note that two of the poles of(z) lie inside this contour. Thus by

Cauchy’s residue theorem,
1
271

To find the residues, write

%fdz = Res;(e"™/*) + Res (™).
7

(4.14)

1 1 1 1 1
f<2)_ 1420 (Z—ei%) (z—eiaf) (Z—eisf) (z—eiT).
Thus
. 1 1 1
Resf(e”/4) = ( — 3,,)( — M)( — ,7,r)
e's —e'a e's —e'a e's —e'a
L 1 1 1
= (& 4 —
(i) ) (i)
1+
= 4.15
NG (4.15)
and similarly
i3 _ 497 1 1 1
Resg(e™) = e <1+7;) (1—@) (2)
1—2
= 4.16
NG (4.16)
Thus we have
1 1+ 1—1
— dz = — +
i} T TR T
7
22
T
fdz = —. (4.17)
g NG
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Now, note that

éfdz = j{lm fdz = L fdz+ /V fdz. (4.18)

Observe that
[re=[
fdz:/ —dx
ol _R1+$4
and that
[ = [
z = —dx
72 —R1+Z4
L
fdz| = '/ dx
/72 _pl+2z4
1
<
- rzrg}g 1424 i
1
= 7R (4.19)
Thus

lim
R—o0

< lim

A = 0. (4.20)

/7 i

Hence, a® — oo, fw fdz — 0. Therefore af? — oo we get our final result;

T A S fdz = =
R _Rl+x4x e S V2

2

& 1 T
= —. 4.21
/_oo R, #-21)

4.3 Chapter 3, Exercise 5

Exercise 4.4.Use contour integration to show thgt'_" (elf—;f;dx = 31+

2r|€|)e2"¢l for all ¢ real.

Solution: Let f(2) = & = - We see thaff(z) has poles of
order2 atz = +i. Thus
. d
res,, f(z) = Zh_)n;lo —Z(z —20)%f(2). (4.22)
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Alternatively, we could write our function as

9(2)
pu— _— 4.2
and then we need only compute the coefficient ofthez, term ofg.
Now consider the residue af = i:

tesqif(2) = m (e (e 40) )

z2—=1 A2

= lim(—2mife 2™ (2 4+ 4) 7% — 2e72" (2 +4) %)

z—1

1 1

= §m§e2’ff - Zie%f : (4.24)

For zy = —i, we have:
res,,——;f(z) = lim i(e‘27r2"25(,z —i)7?)
0= Z2—1 dZ

= lim (—2mife 2™ (7 — )72 — 272 (3 — §)73)
z——1i

I

= 27rz§e + e (4.25)

Now let us first consider the case whén< 0. We will use the contouty of a
semicircle oriented counterclockwise in the upper hadiqpl with radiusk. Call
the portion ofy along the real line;; and the arc portiorn,. Note that there is a
pole insidey at zy = i. By the residue formula, we have that

1 1 1
/f(z)dz = 2mi <§7ri§e27r5 - Ziez’rﬁ) = —2e™ 4 §7r62”§. (4.26)
.

We also know that

+0o0o
f(x)dx = I%im f(z)dz. (4.27)
- e 7
Along v,, z = Re? anddz = iRe?df, wherez = Rcos + iRsin . Thus
T e—27ri£Rei9,L’R€i6
dz = 4 do. 4.28
[ sz = [ (4.28)
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Then it follows that
—2mi€ R cos 9627T§R sin G,L'ReiG
(1 _ R26i26)2

¢ o

<
0

™ Re—ZW\ﬂRsine
< L
- /o (1—R?)?
i R ™R
ot gp- 4.29
= / a-rep” = m oy (#.29)

Taking the limit ask goes to infinity, we have

Thus
lim / f(z)dz=0. (4.31)
R—o0 2
Solimp_, e fV f(z) =limg_ o fyl f(z). It thus follows from Equation 4.26 that
+oo 6—27”':(:5 1
d - _ .2 27wE - 27wE
/_OO 7(1+x2)2 x e +27re
- g(1+27r|g|)e-2ﬂﬂ (4.32)

Now consider > 0. We will use the contoury of a semicircle oriented
counterclockwise in the lower half-plane with radiis Call the portion ofy
along the real line; and the arc portion,. Note that there is a pole insideat
zo = —i. By the residue formula, we have that

1 1
dz = 2mi m e 4 Zjem 2 —m2fe ¥ — —re ¢ (4.33
4 2
Also note that,

R—o00

+oo
3 f( = — lim / f(z (4.34)

Along v,, z = Re? anddz = iRe?df, wherez = Rcosf + iRsin§. Thus,

0 6—27ri£Rcos962ﬂ§Rsin9iR6i9
/ f(2)dz = /_ R (4.35)
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Accordingly,

[ 1@ < [ 1ree
Y2 Y2
2m|€|Rsin 0
< Ll
_7r (1_R26129)2
0
R
< -
< |l
TR
Taking the limit ask goes to infinity, we have
And thus,
lim/f(z)dz:(]. (4.38)
R—o0 ~o

Solimp_, o0 fV f(z) =limp_ o fyl f(z). It thus follows from Equation 4.33 that

+00 e—27ri:v§ p B 2 _ome 1 ome
_mml’— — —7T£6 —571'6

= 5 (1 +2ng) e (4.39)

Thus for all real,

+oo 6—27”':(:5 T _2

4.4 Chapter 3 Exercise 15d

! For any entire functiorf, let's consider the functioa®). It is an entire function
and furthermore we have the real partfok bounded so:
u+iv|

lef] = [e**™| = |e"] < o0

IHint from Professor Miller
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Hencee’ is bounded and therefore, by Louisville’s Theorerh,is constant. It
then follows thatf is constant .

Alternatively, we could argue as follows. We are told thel ygart of f is
bounded. Let’'s assume that the real part is always at Best in absolute value.
Then if we consider(z) = 1/(B — f(z)) we havelg(z)| < 1. To see this, note
the real part oB — f(z) is at least 1. We again have constructed a bounded, entire
function, and again by Liouville’s theorem we can conclyd@nd hencef) is
constant.

45 Additional Problem 1

2 Let: .
f(z) = Z an 2"
n=-—>5
g(z) = Z by, 2™
m=—2
1. We have:
resof = a_1
respg = b_l
2. We have ,
fE) +g(z) = a2 + Y (an+b,)2"
n=->5 n=—2

Soreso(f +9g) =a_1 +b_4.

3. Wehave-1 = -54+4=-44+3=-34+2=-24+1=-14+0=0-1=
1 —2so0:

reso(f g) =a_s b4 +a_y bg +a_j3 bg +a_o bl +a_q bo + ay b_l + aq b_g

2Hint from Professor Miller
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4. We have (assuming # 0):

flz) s 2"

g(z) D ez bm 2™
1), 5an—32"
23 > S bym 2™
1 ZZO:_Q n-3 2"

= . 441
b_oz 1— (—é > b 2™) ( )

As z — 0 the final quantity in parentheses tends to zero, and thus we ca
expand using the geometric series formula. We only caretabewonstant
term of this fraction, as it is multiplied by/b_,z and thus only the constant
term contributes to the pole. This is a very useful obsepwmatit means that,
when we expand with the geometric series, we can drop mamgsiers we
only need to keep terms that contribute to the constant tRemember, we
are not trying to find the Taylor expansion of this functiont bather just
one particular term. We can thus write:

+(a_g2” )(I)_—_i(b_lzl+ )+) +(a_32")(1+---) + }
(4.42)
>0 1 bp by b_q
reso(=) = s [a_5(—b ) + b2—_2) + a_4(—b—_2) + CL_3:|

4.6 Chapter 3 Exercise 17a, Extra Creadit

Exercise 4.5.Let f be non-constant and holomorphic in an open set containing
the closed unit disc. Show that jf(z)| = 1 whenevetz| = 1, then the image of
f contains the unit disc.
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Solution: Supposef(z) does not have a zero in the unit difc, Thenl/f(z)
is holomorphic inD. Note that sincef(z)| = 1 whenevenz| = 1, |1/f(2)| =
1/|f(z)] = 1 wheneverz| = 1 as well. Butf(z) is holomorphic inD, imply-
ing |f(z)| < 1in D by the maximum modulus principle sin¢g(z)| = 1 on the
boundary ofD. We find1 < |f(z)| < 1 in the unit disk, which implies that our
function is constant as its modulus is constant (from arieragkercise), contra-
dicting the assumption thgtis not constant!

Let wy, € D. Consider the constant functigriz) = —w,. On the unit circle,
|f(2)] = 1> |wy| = |g(z) for all |z| = 1. Thus by Rouc#is theorem,f(z) and
f(2)+g(z) have the same number of zeroes inside the unit circle ().iBut we
have shown thaf(z) has at least one zero, thus for some0 = f(z,)+9(zw) =
f(zw) — wo. Thus for allw, € D, there existg,, such thatf(z,) = wy. Thus the
image off(z) contains the unit discJ

5 Homework #5: Pegado, Vu

HW: Due in my mailbox by 10am Friday, October 22 (as there is naclass on
Tuesday): Chapter 5: Page 155: #6, #7, #9 (extra credit: whas the combi-
natorial significance of this problem?). Chapter 3: Page 104#10. Additional

Problems: (1) Find all poles of the functionf(z) = 1/(1 — 2?)* and find the
residues at the poles. (2) Consider the map(z) = (z — i)/(z + 7). Show that
this is a 1-to-1 and onto map from the upper half plane (allz: = = + iy with

y > 0) to the unit disk. (3) Calculate the Weierstrass product forcos(7z) (this
is also problem #10b in Chapter 5, and the answer is listed the), and for
tan(mz).

6. Prove Wallis’s product formula
T 2-2 4-4 2m - 2m

2 13 3.5 @m—-1)-2m+1) "

[Hint: Use the product formula fosin z at z = 7/2.]

6. We know (from p. 142) the product formula for the sine functi®

sin(r _zH<1——).
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Letz = 1/2. Then,

sm7r/2 %ﬁ( 1/2 )

Usingsin(7/2) = 1, we simplify this equation:

L ﬁ(l—n—) (5.1)
sl a) 62
: - (%) =
i

n=1

(5.5)

But this implies that

_:ﬁ< 2 + 1) 2271—1))

n=1

proving the identity.

7. Establish the following properties of infinite products.
(@ Show that if¥|a,|* converges, and,, # —1, then the producf[(1 + a,)
converges to a non-zero limit if and onlyif:,, converges.
(b) Find an example of a sequence of complex numfers such thata,, con-
verges bu{ [(1 + a,,) diverges.
(c) Also find an example such thgt(1 + a,,) converges an&a,, diverges.

7. a) Let) |a,|? converge withu; # —1.
(<) First assumé _ a,, converges to a nonzero limit. Without loss of gener-
ality we may assume that eaely satisfiesa,,| < 1/2; this is clearly true in the
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limit (as the sum converges, the summands must tend to zZ&/e)assume this
to facilitate expanding with logarithms. Consider the prad [(1 + a,,). Taking
logs, we sedog ([I(1 + a,)) = >_log(1 + a,). Settingz = —a, and using the
Taylor expansion

we see that

log(H(1+an)):Z(an—%%—?—---).

In general, notice that
0 2 3
_|rl* < _.7}_ + x_ — < k
S el s |G e
or

x?  ad

—m%+m+mﬂm)§%5+§—~WQWOHMHW+W>

If a sum)_ x converges to a nonzero limit, we know that converges to zero;
thus we may assume (without changing convergence):that % Thus using the
geometric expansion, we see that |z| + |z]? + --- = . Becauséx| < 1,

1—|z|”
we have thatl_lW < 2. Hence we have that

.TZ .Z’S
P < = o <202
ot < |5+ 5 -] <2
Recall that we were looking &g ([J(1 + a,)) = > (a, — % % —).

Since)  a,, converges, we know eventually we must h&wvg < 1/2, so we can
assumea, | < 1/2 without changing convergence, and thus use the simplificati
involving the geometric series expansion developed in tlewipus paragraph.
Thus we write

1og(H(1+an)) = Z(%-%%—%—---)

(5.6)
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A QUICKWORD OF WARNING. THE ABOVE EQUATION, AND THE
ONES BELOW, AREALITTLE ODD. REMEMBER THAT OUR SEQUENCE
NEED NOT BE JUST REAL NUMBERS. AS SUCH, WE MUST BE CARE-
FUL WITH THE DEFINITION OF ABSOLUTE VALUE. WE ABUSE NO-
TATION A BIT — WHEN WE WRITE a < b+ ¢, THIS MEANS THE DE-
SIRED RELATION IS TRUE UP TO A LINEAR RESCALING. REALLY
WHAT WE MEAN IS a = b UP TO AN ERROR AT MOST |¢|. WE RE-
ALLY SHOULD WRITE THINGS LIKE |a — b| < ¢, BUT IN A HOPE-
FULLY OBVIOUS ABUSE OF NOTATION....

Since by assumption both a,, and " |a,|? converge, we must have that
S a,+2Y |a,|? isfinite, call it L. Thuslog ([(1+a,)) < L, so[](1+a,) <
e, which is again finite. Thus the product converges.

(=) Next assumg[(1 + a,) converges to a nonzero limit. Sin¢¢(1 + a,,)
is converging to a nonzero limit, the terms in the product infa@ésconverging to
1, so we must havé:, | approaching zero and we can assumg < 1/2 without
affecting convergence.

We now write:

log(H(1+an)) = Z(an_%+a_;_...)

2 3
> Z(an—%—%_...)
> 3 (a0 — lan = fan? =)
(5.7)
As before, we substitute in using the geometric series esipan
log (JIA+an) = D (an —lan|* = lan* —---)
= Z (an = |an? (L4 |an] + Jan* + - +))
> Z (an — 2|an|2)
= 2 o2 Jmf
(5.8)

Thus we see thdbg ([](1+a,)) +2> |a.|* > > a,. Since[](1+a,) and
>~ |a,|* converge, we must have that; ([T(1+a,)) +2 3 |a,|?* are both finite.
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Thus our sund_ a,, is bounded by finite terms, and so the sum must also be finite
itself. Hence the surh_ a,, must converge to a finite limit.

b) Let{a,} = { , =%, =L ...}. The sum}_ a, converges by the alter-
VI VI V2 \/_
nating series test, since the absolute value of the term®agipes zero (one can
show this by showing that first the odd terms tend to zero ilalbs value and
then that the even terms do as well).
Consider now the produgf (1 + an). For an arbitrary integeW, look at the

2N-th partial product:

i) - (o)) (o))
- (=)o)
A
() 50)

= 2N +1.

(5.9)

Thus when we evaluate at an even texiv,, we see that

2N
lim (14+a,) = lim 2N+1)=
2N —o00

2N —o0
n=1

so the product diverges. Hence the product diverges at evars tand thus cannot
converge in general.

c) For a trivial example, lefa,, } = {1,—1,1,—1,...}. The sum)_ a,, does
not converge because the limit of tAah partial sum asV tends to infinity does
not converge; it alternates betweerand 1. However, the product will clearly
converge:

Han —(1+D1-DA+1)A=1)---= (1)(0)(1)(0)---=0.
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For an example in which the sum diverges but the product egegdo a nonzero
limit, consider the sequende,,|az, 1 = 1/v/n, as, = —1/(14+/n)}5°,. Group-
ing the pair2n and2n — 1 together, we see that

n=1

= 1
B nz::l n+n
We'll show that this series diverges. Notice that for every n

o0

1 =1
;njt\/ﬁzz%

n=1

and since the series on the RHS diverges, by comparisorstedies the series
on the LHS. Soy _ a, diverges. However, grouping again the even and odd pair
terms, for evenvV, we have

N N/2

1 1
m:1(1+am) :g(”ﬁ)(l‘ \/ﬁ+1)
iz 1 1 1
:g(1+ﬁ_\/ﬁ+1 i
N/2
B _—Vntyn+1-1
N/2
:H1:
and for odd N,
N 1
nl;[1<1+am):<1+\/—ﬁ>

which converges to 1 a§ — oo. Thus,

o0

[Ta+a)=1

n=1
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Hence{a,} is the desired sequence. O

9. Prove that if|z| < 1, then

o0

(L 2) 1+ 21+ 21+ 2 =[] (1+2%) =

k=0

1
1—2

9. Consider the produ¢t + z)(1 + 22)(1+2%)(1+2%) - - -. Suppose we tried
to multiply this product out: to get one term, we would needhoose either the
or the power ot in each term to multiply by. For example, one term we could get
out is simplyz, where we would choose thein the first term and thé in every
succeeding term; another way to say thisistowite z x 1 x 1 x - --. To write
out the entire product, we would have to make sure we evaluatery possible
choice of ones and powers of

But this isn’t so bad if we think of choosing terms as countimdpinary. In
binary counting, a number is written entirely in terms of @id 4s. For any given
number, each digit represented a choice between the digitdGhe digit 1. If
we think of selecting the power af in a term as picking for a given digit in
binary counting, and selecting thein a term as picking for a given digit in
binary, we can identify a bijective correspondence betwiegggers written in
binary and products from our term (with the exception 8000000 --- = 1 in
our product). For example, the binary numbet = - - - 000101 = 2% x 1 + 2! x
0+ 2" x 1 = 5, and if choose the term(s)(1)(z*)(1)(1) - - -, we see that we get
the product:®.

To evaluate our product we must sum over all such possibleeso Since
all possible binary numbers together yield precisely thenegative integers, this
bijective correspondence importantly tells us that the swer all such products
will be the sum over all nonnegative powers of zlarz + 22 +23+. ... Thuswe
have(1+2)(142%)(14+2*)(142%) - - - = 14+2+22+23+. ... Sincelz| < 1, we can
use the geometric expansionzoo write (1+z)(1422)(142*)(142%) - - - = =,
as desired.

Significance for combinatorics: notice the way in which oolusion invokes
combinatorics (such as seeing how many ways we can chooserms to make
a product).

Alternatively, we can truncate the product and multiplyloy z. Note that
(1—2)(1+2)=(1-2%),then(l —2%)(1+2%) = (1—2%),and so

(1=2)1+2)1+2)1 42 1+22) =122,

32



as|z| < 1 the latter tends to 1, and thus

(1+2)14+ 21 +2Y--- (1422 = - —

Chapter 3

10. Show that ifa > 0, then

> logx s
drx = — loga.
/0 2ra T 2q B¢

[Hint: Use the contour in Figure 10.]

10. We will first find the residue at and then integrate over the given contour.
Let f(z) = 2120_%;, where we take the branch cut of the logarithm aleng for

all b € [0, 00). Furthermoreja is a zero of ordet. Finding the residue &t, we
have

log z
res;, f = Zh_lgla(z - m)ﬁgaz
1

= lim (27

z—ia 2 +1Q
_loga
- 2ia
_loga ~w
 2ia  2a

Label the contours from the portion on the positive real axisthe larger arc
~2, the portion on the negative real axig, and the smaller arg,. Chooser <
min{a, 1}a, R > max{a,1}. Parametrize, with z(t) = t from e to R, ~, with
2(t) = Re' from 0 to , 3 with z(¢) = ¢ from — R to —e, andy, with z(t) = ec®
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from 7 to 0. Integrating over the, and taking absolute values, we have

™ log Re"™ .,
——————Rie"dt
/0 (Rep ‘

™ it
< / log Re Riet
0

R2€2it + a? dt

- / ™| log Re®

- 0 R2e2it 1 g2
[T | log R+t
- 0 R2e2it 4+ g2

™ log R+ |it|
< ————— Rdt
—A |R2622t|+|a2|

™ log R+t
:/ L +|2‘dt
0 |Re%t| + %

1
S/ ogRj:tdt
0 R+‘G—R‘

logR+m
=T el
R+

Rdt

Rdt

|a?]

sincet, log R > 0. SinceR — oo, log R + 7, R + 5 — oo, by L'Hopital,

. logR+m . 1/R
lim — T = lim o]
R—o00 R+ T R—oo 1 — Nl

= P%im 7]
—oo R 7

Thus, askR — oo, the contribution along, vanishes td). Similarly, for~,, we
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have

0 log et

(ee™)? + a2

/ logz
o 22+ a2

ee'tdt ‘

logee™ .,
6262zt + a2

log ee
62622t + a2
o —loge + it
62622t + a2
o —log e+ Jit|

‘62622t| + |a2|
0 _loge+ t

- ‘€€2zt| + Ial

</0 log6+t
+\a\

—loge+m
e—l—@

dt

IN

edt

Il
\\o\

edt

edt

IN

™

dt

sincet, —loge > 0. Sincee — 0, —loge + 7, € + 'ij — o0, by L'Hopital,

—1 -1
lim 108 Ty, V€
e—0 €+ % e—>01 |‘Z_2‘
-1
= lim 7]

Thus, as — 0, the contribution along, also vanishes t0. For the integral over
Y1, Y3, WE have

] R Nogt ]
/ 720g22dz:/ o8t 2dt+/ 8 s,
71_;,_732 +a € t +a R s+ a
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Letting s = —t, we have

logz logt log —t
/ 2, 2 / IR / e e hdt
s 2 G t“+a R 2+a
R logt og t
2 + a2
/R logt / ogt + z7r
e el

R
logt 1
—2 dt S
Ziﬁ+ o Z,ﬁ+ﬁ

R . R
logt t
= 2/ &dtjt ﬂaurctam—

. t?+a? a a

€

Thus we have, a® — oo, ¢ — 0 and ases;, f = lg%‘ + 32, We have

R ogt o ¢ loga 7
lim 2/ dt + — arctan — = 271 — 4+ —
R—00,e—0 . t2+a? a al, 2ia  2a
R . R
logt t
lim (2/ o8 dt) lim (E arctan — ) =
R—00,e—0 . t2 +a R—00,e—0 a a|,
R 2
logt
im (2 [ 298l ) T
R—00,e—0 . t2 + a2 a
R
logt
lim (2 87 gt
R—00,e—0 . t2 4+ g2

> logt
/ 8 dt =
0 t2 + CL2

as desired.

Additional Problems

mloga

a

mloga

a

wloga

a
mloga
2a

im?
a

im?

1. Find all poles of the functiorf(z) = 1/(1 — 2?)* and find the residues at

the poles.
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Letg(z) =1/f(z) = (1 — 2*)* = ((1 + 2)(1 — 2))*. We see that the zeros of
g are+1, each with orded. Hence, the residues are

. 1 a\" g 1
fesﬂf):lli%m(@) R

1
i L[ o
—:6 \de (1+2)4

and

res(f) = lim, gy (@) CH =y

.1
= lim, 56

~—

—~
(=)

~—

z——1 (z — 1)7
=

=

e

T 32

Thus we have found the desired residues. O

37



We sketch an alternative proof. We have

1 1
& = oyt

1 1
G-t (z—112)F
1 1 1
(- )12 (1+ 50

11 -1 (z—12% (z—1) !
= ——|1- — --- ] (5.10
@—&%16( > 3 s t) 610
The difficulty is we have to expand the factor to the fourth powell enough to
identify the coefficient of = — 1)®. A little algebra shows it is-2(z — 1), and

thus (remembering the factor 1/16) the residue is {tist32.

2. Consider the mayf(z) = (z —i)/(z + ). Show that this is a one-to-one
and onto map from the upper half plane (al= = + iy with y > 0) to the unit
disk.

2. First we’ll show that the range gf is the unit disk. Writingz = x + iy
wherex,y € R, y > 0, then we have

r+(y—1)
v+ (y + 1)
22+ (y — 1)
2+ (y+1)?

|f(z+iy)| =

and sincey > 0, /22 + (y — 1)2 < /22 + (y + 1)2, f(z +iy) < 1, so the range
of f is the unit disk.

Now we’ll show that f is injective. Suppose faf, z; with imaginary part
positive,f(z1) = f(z2). Then

Zl—’i . 22—2.
Zl—|—7; N ZQ"‘i
(21 =)(z2+14) = (22—i)(z1 +19)

leg—FZl’i—Zgi—i‘l = Z1%2 —Zli+22i+1
272(21 - 22) =0
21 = Z92. (511)



Here’s another, faster way to do the algebra. We add zero:

21—t Ze—l
2 +i 29+
2+i—21  zmt+i—2
zZ1+1 N Z9 + 1
o o2 (5.12)
21+ 1 Zo+1

it is clear that the only solution is wheh = 2.

Now we’ll show thatf is surjective. Given any € D, settingz = (w +
1)i/(1 — w), we see that

(w+1)i .
f(2) = o
—w) T

(w4 1)i = (1—w)i

S (w+1)i+ (1 —w)i

= w.

Now we’ll show thatz has positive imaginary part. Writing = = + 7y with
x,y € R, 2% +9? < 1, we have

:Z_(x+1)—|—z'y
(1—2)—iy

2y +i(l -y —a?)

(-

So the imaginary part is — (z* + y?) > 0, soz has positive imaginary part. ]

3. Calculate the Weierstrass product fess(rz) (this is also problem 10b in
Chapter 5, and the answer is listed there) andtfat(rz).
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3. By the Euler formulas for sine and cosine, we see that

6i7rz + 6—i7rz
2
6i%(6i7rz + 6—i7rz)
29
(eiw(z—i-%) _|_e—i7r(z—%))
21
— €
29
) 1
=sin(n(= — 2))
2
and since the zeros ein 7wz occur only at the integers, the zeroscof 7z occur
atm + 3 for all m € Z. Thus, define the sequende,,_, = n + 3, a2, =
—(n + 1)}>2,, which are precisely the zeros efs7z. Furthermore, since the
zeros of sine are of order 1, the zeros of cosine are also ef orte. Thus we have,
for hy.(z) = Zle Z]—J grouping together the paigs and2n — 1, the Weierstrauss
product ofcos 7z is, up to a factor o#"(*) for some entire function,

= v ¥4 v =
1— )& =TT - 1- elm
I1¢ o) [« n+%)( _(n+%)) 11

cos(mz) =

6i7r(%—z) —iw(%—z)

m=0 n=0 m=1
= 1 (1— Ll)eZ?Szl him(2)
n=0 <n + §>2
bt 427 o
g (1 J— %)6 m=1 h””(z).
vt (2n+1)

Considering [~ (1 — %), we’ll show this product converges. Note that

1 = 1
@ne " 2 2n 1)

n=0

90
I
NgE

3
Il
—
Il
—

n

1
(2n+1)2

= o
M]3
3, =
I
NE

3
Il
—
Il
=)

n

so since the sum on the RHS is bound€(. , -5, a convergent series, the series
on the RHS converges as well, and as the convergence is &ysible product
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converges. Thus (up to the exponential of an entire funtioa Weierstrauss

product ofcos 72 is T[;2. (1 — 5e)-

Next, notice thatan(rnz), has poles at odd integer multiples hfand so by
definition does not have a Weierstrass product.

6 Homework #6: Kung, Lin, Waters

HW: Due Friday, November 5: (1) Evaluate [~ _cos(4z)dz/(z* 4 1). (2) Let
U be conformally equivalent to V and V conformally equivalert to W with
functions f: U —> V and g: V —> U. Prove go f (g composed with f) is a
bijection. (3) The Riemann mapping theorem asserts that if Uand V are
simply connected proper open subsets of the complex planeeh they are
conformally equivalent. Show that simply connected is esaéial. In other
words, find a bounded open set U that is not simply connected amprove that
it cannot be conformally equivalent to the unit disk. (4) Chapter 8, Page 248:
#4. (5) Chapter 8: Page 248: #5. (6) Chapter 8: Page 251: #14.

1. Evaluate [~ _cos(4x)dz/(z* +1). Evaluate[~ cos(4x)dz/(z* + 1)

First observe thatos(4z) = §(e** + e~*7), sincee’™ = cos(4x) + isin(4z)
ande™** = cos(4x) — isin(4x). We can rewrite this integral, then, as

/oo COS(4IL’) e 1/00 641':(: _|_6—4i1: :1 /oo 642‘1: dx_'_/oo 6—42'3[: i
oo THH1 2 ) x+1 2\ J_ ot +1 Lot 1

and we can evaluate both halves separately.

For both halves, observe that the poles are located=at ™, ei™, ¢i™ i
since those are the solutionstb+ 1 = 0. We can now choose a contour over
which to integrate and apply the residue theorem. Our chaficentour is moti-
vated by the decay of the functions. We need to work in the upgak plane for
exp(4iz) to decay, and in the lower half plane fetp(—4:z) to decay.
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8411‘

Forffooo Tda consider the contouy, that traverses the semicircle of radius
R in the upper half-plane and the real axis, with standarchtieigon. This con-
tour will enclose only the poles at= 1™, ¢i™, so it suffices to find the residues
at those two points in order to apply the residue theorem.

The simplest way to compute the residues is to note that we $iayle poles
and we may writef(z) = g(z)/h(z) with h(z) having simple zeros ang, h
holomorphic. Then the residue gfat a polez is justg(zy)/h'(z). For us,
g(z0) = exp(4izg), while b/ (z) = 423.

At e17i = @ + z§ the residue will be

4exp(in/4)3 4exp(3im/4) - —2v/2 +i2V/2

We can compute this another way as well:

exp(4iexp(mi/4)) exp(2i(v2 +iv?2)) exp(—2v/2 +i2v/2)) .

eliz 6—2\/§+2\/§i 6—2\/54-2\/5@'

1.
lim (z —e1™ dz = , , ‘ ‘ , — = .
z%e%”( )2’4 +1 (e%m . e%wz)<€i7r2 i e%mxe%m _ e%m) 2\/5(_1 + Z)

At ei™ . the residue will be

s eliz e—2V2-2v2i e~ 2V2-2V2i
lim (z - 617”) 1 dz = —5— i 3 5 -, 3. N NS
e 2t 41 (617” — 627”)(627” — 617”)(617” — 627”) 2\/5(1 + Z)

Thus, the countour integral ovey is equal to

6—2\/§+2\/§i 6—2\/5—2\/52‘
v +
2V2(—1+41)  2v2(1+1)

Now let the radius R tend to infinity, and observe that theiporof gamma
that is not on the real axis (i.e. the semicircle of radius R) mvake a zero
contribution to the integral. In the upper half-plane, thtegral is at most the
maximum value of the integrand on our contour times the kewgthe contour.
Since the length of the contourisk, then, we have

4iz Ri
i ¢ . TRe
lim / 1 dz) < | lim — dz| =0
R=00 /) semicircle # +1 R—soo R4 —1
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(note we need®®* —1 and note*+1 in the denominator, as the upper bound occurs
when the denominator is as small as possible in absolute Mlis happens when
z* is negative, which occurs far= Rexp(ir/4)).

Only the portion of the contour integral that lies on the raxik makes any
non-zero contribution to the integral, then, so

0o iz —2f+2\/§z‘ 6—2\/5—2\/51'
——dx =2m + )
/_oox4+1 W2(—1+1)  2v2(1+1)
As our denominator is non-zero and decays rapidly, @yd4iz) = cos(4z) +
isin(4x), we see we may drop the integral from the sine term. The reiagbat

this is an odd, rapidly decaying function integrated oveyrametric region, and
thus it gives zero. We therefore find

® os 4 e—2V2+2v2i e~ 2V2-2V2i
/ ——dxr = 27 — + — | .
_ W2(—1+1)  2v2(1+1)

WE MAY STOP HERE! There is no need to evaluate the other contour, as it
will simply give us another calculation of our desired intgFor completeness,
we include how the calculation would go in the lower half @ahut again, there
is no need to do this!

For [~ - m4+1 “ dz, we can repeat the same process, but we must use a different

contour. For this functlon— won’t vanish ask — oo for z in the upper half-
plane, since-4iz will have a Iarge positive real component, but it will vanish
the lower half-plane. Use the contoyr consisting of the semicircle of radius R
in the lower half-plane and the real axisjs very important to note that we are
traversing the real axis in the opposite orientation, rumpiromoo to —oo. Now,
with z restricted to the lower half-plane, our integrand will agaanish, so we
have

) 6—4@2
lim
R—o0

dz =0,

v2,semi—circle 2%+ 1

and we see that
—4iz —00 —4ix 0 —4ix
/ 64 dz:/ 64 dx:—/ iidx.
v 251 o Tt H41 o T
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Our contoury, encloses the poles atp(27i) andexp(Zi), so we need to find
the residues at those two points.

At ei™ . the residue will be

s e hiz e—2V2+2v2i e~ 2V2+2V/2i
lim (z —es™) dz = —— — —— — = .
2 2 +1 (e1™ — ea™) (1™ — e1™)(e1™ — e1™)  2v/2(1 — i)

At ei™ the residue will be

. ez e—2V2-2V/2i e—2V2-2V2i
lim (z —ei™)—F——dz T e Pr evmm vl —.
e zt+1 (647” - 647”)(@47” — 647”)(647” — 647”) 2\/5(—1 - ’L)

The integral ovety,, then, is equal to

e—2\/§+2\/§i 6—2\/5—2\/2'
i +
2v2(1 —4)  2v2(—1—1)

As R — oo, this equals the integral over the real line; however, rebemhat
we are proceeding with the opposite orientation, runningnfso to —oco as we
are using a semi-circle in the lower half plane, and thus aeetise the real line
in the opposite orientation as usual. To fix this and restoeecorrect orientation
requires a minus sign, and we find

%0 —diz e—2V2+2V/2i e—2V2-2v2i
/ dr = —2m1 .

ot +1 2v/2(1 — i) - 2v/2(—1 — i)

We then argue as before, namely thap(—4iz) = cos(4z) — isin(4x), and
the sine integral does not contribute as it leads to an oédiiat over a symmetric
region. Arguing along these lines, we find the same answeefaseh

2. Let U be conformally equivalent to V and V conformally equivalent to
W with functions f: U —>V and g: V —> U. Prove g o f (g composed with f) is
a bijection.
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To prove that g f is a bijection, we need to show thatd is one-to-one and
onto.

One-to-one: Consider an arbitraty, x» in U and assume thato f(z;) =
go f(xz2). We need to show that; = z,. First observe that, since g is one-to-one,
go f(x1) = go f(xy) implies f(z1) = f(z2). Since fis also one-to-one, we have
thatz; = 2, and we are done.

Onto: Consider an arbitrary € U. Sinceg is onto, there is some € V such
thatg(v) = . Sincef is also onto, there is some € U such thatf(u) = v.
Thereforeg o f(u) = x, Sog o f is onto.

Theng o f is one-to-one and onto, so it is a bijection. O

3. The Riemann mapping theorem asserts that if U and V are simly con-
nected proper open subsets of the complex plane then they acenformally
equivalent. Show that simply connected is essential. In oén words, find a
bounded open set U that is not simply connected and prove thatt cannot be
conformally equivalent to the unit disk.

Solution: Consider the punctured unit digg—{0}, a bounded open set that is
not simply connected. Consider function f(z)=1/z on a eiraf radius 1/2. Then
f(z) is holomorphic on the set, since the origin is not inedd

If a conformal mapy exists fromD to the punctured disc, then the function
f(2) will map to a holomorphic function oy, and the circle will be mapped to a
closed curve iD. (Technically we proved Cauchy’s theorem, which we’ll use i
a moment, only for simple, non-intersecting curves. Onestenw that the image
of our closed curve is also a simple, non-intersecting ca@seve. If it intersected
itself, that would violate the 1-1 property of our conformadpg between the two
regions.)

We first compute;’- f T , f(2)dz. As f(z) = 1/z, a brute-force computa-
tion (or use the Residue 'ILheorem) tells us that this is just 1.

What if we look at the inverse image of the circle of radiy® in the unit
disk? Let’s call the inverse imagg sog(vy) = {z : |z| = 1/2}. Then, using the
change of variables formulas4f= g(w) (recallg is our assumed conformal map
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from D to the punctured disk), thetx = ¢'(w)dw and

L Oy / £(9(w))g (w)duo.

211 |z|=1/2 271

As f and g are holomorphic, so too ig(g(w))g’(w). As we are integrating a
holomorphic function over a closed curve, it is just zero.

We've thus computed the integral two different ways, gettlnas well as 0.
As 1 # 0, we have a contradiction and thus the unit disk and the poedtunit
disk are not conformally equivalent.

4. Chapter 8, Page 248: #4Does there exist a holomorphic surjection from
the unit disc to the complex pladg?

Solution: From 8.1.1 in the book, we know that there exists a confornmag m
from the disc to the upper half-plane:

11—z
F(2) = ig
Now we just map this image to the complex plane. We can do sodwng
it down i units and then squaring it. The upper half-pl&heepresents complex
numbers with positive imaginary part (z=x+iy, y>0); howeva better way to
view this is to note that the upper half plane are all numbgétiseformr exp(if)
with » > 0 and0 < 6 < 7. If we were just to square this as is, we would get every
angle we need but = 0 and every radius we need but= 0. The problem is that
the upper half plane is an open set and does not include itddaoy the real axis.
We may rectify this by mapping the image of the unit disk unfilenamely the
upper half plane, downunits. We now include the entire real line as well. While
our resulting map won't be 1-1, it will be ontdlowour region includes at > 0
and allé € [0, 7]. Squaring this gives alt > 0 and allé € [0, 2x], as desired.
Thus our next maps are

(6.1)

g(z) =2z—1i (6.2)

and
h(z) = 2* (6.3)

The functionsf, g, and h are all holomorphic surjections on the complex
plane, sdu(g(f(z))) is a holomorphic surjection that will map — H — C.
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- (6.4)

5. Chapter 8: Page 248: #5. Proveg(z) = —1(z + z') us a conformal
map from the half-disk {z = = + iy : |2| < 1,y > 0} to the upper half plane.
First, we check thaf (=) is holomorphic. We have that ' (z) = 5(1 — %)
and so it is az # 0. We next check that this mapping will give us a value in the
upper half plane. We take= x + iy. Because is in the upper half disky > 0.
Thus,
—1

) = S+t —)

o P
= —|z+1 .
2 YTy

Becausd:z| < 1, we have thatz? + y?| < 1, and thus the imaginary part inside
the parentheses above is negative, and thus becomes @aogitim multiplication
by —1/2. Thusf(z) is in H.

We now show thajf(z) is onto. That is, givemw in the upper half plane, we
must find az in the upper half disk such thd(z) = =!(z + 1) = w. Thus, we
have to solve

2+- = 2w
z
2wz = 241
Z2+2wz+1l = (z4+w)?—(w'—1) =0
(z4+w)? = w?-1. (6.5)



Therefore,

z=vuw:—-1—-w

and so provingf(z) is onto is equivalent to showing thgfw? — 1 — w is in the
upper half disk whenevew is in the upper half planeNEED MORE INFO
HERE.

We now show thaif(z) is one-to-one. To do this, we talfga) = f(b), with
a, b in the upper half disk. Thus, we have

1
at—- = b+
a
ab+b = ab®+a
a’b—ab®* —a+b = (a—0b)(ab—1) = 0.

We then see that, ifab — 1) = 0, thenab = 1, soa = 1/b. Becausé is in the
upper half disk,|b| < 1. This would causel/b| = |a| > 1. Because we know
thata is in the upper half disk as well, this cannot be the case, and s 1 # 0.
This means then that— b = 0, and soz = b. Therefore,f(z) is one-to-one, and
so f(z) is a conformal map from the upper half disk to the upper hahgpl

6. Chapter 8: Page 251: #14. Prove all conformal maps of the yer half
plane to the unit disk are of the form e’ (z — 3) /(= — 3) for § real and 3 in the
upper half plane.

We first see that, giveri andg two conformal maps froni to D, we then
have thaty=! : D — H and f o g~ ! is a conformal map fronid to D. That is,

f o g~!is an automorphism ab. From the book, we know that o g~! is of
the forme? 2== for somea in the unit disk. In order to then solve for a general

1—az

form for f, we can use the inverse of any functigm H — D. In other words,
f(z) = (fog~'og)(z). We choosg(z) = =.
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We find

fz) = (foglog)(z)
o a—g(2)

1 —ag(z)
Z2—1
0 « Z41
—z—1
1-o%
aztai—z41
0 Z41
z+i—azdtor
z+1

gpZ b az— o

== (&

Z4+1—az+ o
gl =a)z—i(1+a)
- 66(1—az)+¢(1+a)' (6:6)

We have to be a bit careful in simplifying the above. Note tbalgs to get a
rotation timesz — 3 overz — 3. We thus need to have justzaplus or minus a
constant in the numerator and denominator. We therefoleopia 1 — o from
the numerator and a— @ from the denominator. Note these two quantities have
the same norm, and thus their ratio is of size 1. We can thus wWreir ratio as
exp(:6') for somed’, and hencexp(if) exp(if') = exp(i0”). We find

z—i(l+a)(l—a)!
z+i(l+a)(l—a)-t

f(z) = exp(if”)

If we set
B = —i(l+a)(l—a)™

then clearly we do have

3 =il+a)(l—-a) "

We thus have
1(2) = exp(ie”) =2,
z—p

all that remains is to show thatis in the upper half planeNEED TO DO THIS.
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7 Homework #7: Thompson, Schrock, Tosteson

HW: Due Friday, November 12: DO ANY FIVE OUT OF THE FOLLOW-
ING SIX: IF YOU DO MORE, THAT'S GOOD BUT ONLY THE FIRST
FIVE WILL BE GRADED. (1) Consider the functions f,(z) = n/(1 + na2?)
where n is a positive integer. Prove that eaclyf,, is uniformly continuous on
the real line. Is the family {f,,: n a positive integer} equicontinuous on com-
pact sets? (2) Consider a 2x2 matrix M with integer entries ad top row (a,b)
and bottom row (c,d) such that ad-bc = 1; we denote the set of lasuch ma-
trices by SL(2,Z). Consider the mapfy;(z) = (az + b)/(cz + d) with z in the
upper half plane. Is the family {f,;: M in SL(2,Z)} uniformly bounded on
compact sets of the upper half plane? Hint: | think each map isbounded
on compact subsets of the upper half plane, but you can find a gaence of
matrices such that no bound works simultaneously. (3) Letf,,(z) = 1 — nz
for 0 <= x <=1/n and 0 otherwise, and let F = {,,: n a positive integer}. Prove
that lim f,, exists and determine it. (4) Consider the family from (3). Pove
it is not normal (the problem is that the convergence is not uiform). Specif-
ically, to be normal not only must it converge, but given any psilon there is
an N such that, for alln > N, | f,.(z) — f(x)| < epsilon (or this must hold for
a subsequence). (5) Evaluate the integral from -oo to oo of /(z* + 2% + 1).
(6) Integrate from 0 to 2pi the function 1/ (a + b sin theta) whee a and b are
real numbers. What restrictions must we place on a and b in orér for this to
make sense?

(1) Consider the functionsf,,(xz) = n/(1 + nz?) where n is a positive inte-
ger. Prove that eachf,, is uniformly continuous on the real line. Is the family
{f.: n a positive integer} equicontinuous on compact sets?

We must show that, given ary> 0 that there exists@such that, forany., y € R
and anyf,, in our family that whenevelr — y| < 6 then|f,,(z) — f.(y)| <e.
Supposex — y| < d. Then, by the Mean Value Theorem,

o) = fu()] = 1f(Olle =yl < |f(c)|d

So, all we need to show is th#tis bounded. Why? Iff’(z)| < B for all x, then
the above gives

() = fu(y)| < Blz—y| < Bd.
If we taked < €/(B + 1) then we see that, whenevier— y| < ¢ then|f,(z) —
faly)| < ¢, as desired.
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We now showf’ is bounded. We easily find that

—2n2x
1N
) = Ty
—2n? 8n2ax?

fla) = (1 + nx?)? B (1 + nx?)3

Now, setting the second derivative to zero to get

9 1

5= —
3n

so there are at most two local extrema. Notice that

—2n2x . —2n2x 0
m ——— =0,
+oo 4 (n 4 #)2

lim f'(z)= 1 =

r—+o0 :E—1>r:£loo (1 -+ ng}z)z o IE—I)
which implies that the maximum of’ cannot occur ag — +oo. Thus the
maximum value off’ occurs at both oft = +1/+/3n, and this is the desired
bound.

Alternatively, we could argue as follows. We have

F@) = o
Oncez > 1/n the denominator exceeds the numerator;adg(1 + nz?)? is
continuous on—1/n, 1/n/, it is bounded on this interval. Thy$ is bounded.

(2) Consider a 2x2 matrix M with integer entries and top row (ab) and
bottom row (c,d) such that ad-bc = 1; we denote the set of all ©in matrices
by SL(2,Z). Consider the mapfy(z) = (az + b)/(cz + d) with z in the upper
half plane. Is the family {f,;: M in SL(2,2)} uniformly bounded on compact
sets of the upper half plane? Hint: | think each map is boundedon compact
subsets of the upper half plane, but you can find a sequence ofatrices such
that no bound works simultaneously.

If we let K’ be an arbitrary compact subset of the upper half plane, we kno
eachz € K has its imaginary part bounded above and below, and similarl
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the real parts. To show that our family is not uniformly boaddwe must find
a sequence of matrices and points such that the maps applibeéde bounds
become arbitrarily large in absolute value.

We're studying maps of the form

az+b
cz+d

fu(z) =

For problems like this, it is often useful to try and analypedal cases, where the
algebra is simpler. Wouldn't it be nice if the denominatorevpist one? Well, to
get that and satisfy the conditions, we would have to studyioes of the form

(07)

which are in our family. These lead fa,(z) = z+n. Clearly, as: increases, this
is not bounded (as the real and imaginary parts afe bounded, so by sending
n — oo we see it is unbounded.

(3) Let f,,(z) = 1 — nx for 0 <= x <= 1/n and 0 otherwise, and let F = §,:
n a positive integer}. Prove thatlim f,, exists and determine it.

Let xo # 0 be a point on the positive real line. Then for all> N, where
N > 1/|xo|, we havef,, (zo) = 0. This is because

l—nx 0<o< %
falw) = {0 otherwise

and

1 1
n>— = |zg > == f(zg) =0.
|0l n

So asn — o, f, — f where

fu(z) = {1 x=0

0 otherwise

Of course, we haven't said anything abdut,, f,,(0); however, as eacf),(0) = 1,
it is clear that the limit is 1 as well. Finally, what happens £ negative? Well,
asf,(z) = 0for x < 0 by definition, theflim,, f,,(z) = 0 for = negative.
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(4) Consider the family from (3). Prove it is not normal (the problem
is that the convergence is not uniform). Specifically, to be armal not only
must it converge, but given any epsilon there is an N such thafor all n > N,
| fn(x) — f(x)| < epsilon (or this must hold for a subsequence).

Takez = ¢, y = 0. Then obviouslyz — y| < e. But forn such that: < e:

[fu(@) = fuly)] = 1.

So, not normal.

(5) Evaluate the integral from -oo to 0o ofz?/(x* + 22 + 1).

Using the quadratic formula we find that the equatién- z +1 = 0 has roots
ate?™/3 ande'™/3, Therefore the functiop(z) = z* + 2% + 1 has roots at™/3,
e?™/3 /3 ande® /3, Thus we can rewrite our integral as

/. i
4 . 4 —dx.
. (ZE’ _ 67”/3)(1' _ 627”/3)({[' _ 647”/3)({[' _ 657r2/3)

For our contour we will take a semicircle in the upper halfi@af radius R cen-
tered at the origin. In this region we have poles at ¢™/3 andz = ¢*™/3, To
find what these residues are at the poles, we recall that ifamewite a function
h(z) as a ratio of two entire functions(z) andg(z), with g(z) having a simple
zero at the point,, then the residue of at z, is simply f(zy)/4¢'(z0). Using this
we see the residue pfz) ate™/3 is:

627ri/3 1 \/7
(67ri/3 _ 627ri/3)(67ri/3 _ 647ri/3)(67ri/3 _ 657”'/3) - E<3 - 3)
Similarly, the residue of(z) ate?™/? is:
4mi/3 1
‘ (=3 — iv3).

627ri/3 _ 67ri/3)(627ri/3 _ 647ri/3)(627ri/3 _ 657ri/3) = E

The sum of the residuals is therefore/3i/6 = —i/(2v/3). We now show that
the integral over the circular portion of the contour, cefl, contributes nothing
in the limit asR — oco. Since the length ofs is 7R, we have:

2 RZ
ny 252 +1

=R R
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Therefore in the limit we have:
1 o0 x?

omi ) o xt a4 1

dx = —i/(2V/3),
which gives
/OO x? T
A,
N e S e | \/5

(6) Integrate from 0O to 2pi the function 1/ (a + b sin theta) whee a and b are
real numbers. What restrictions must we place on a and b in orér for this to

make sense?
/27r de
o a-+bsinf

z=e? e =1/z, dz=izdf, d) = —idz/z

/2” . / —idz B / 2dz
o a+bsing ) z(a+b(z—1/2)/2i) ), 2iaz+b(z>—1)

where is 0D (the circle bounding the unit disk).

The following lines are the original write-up of the solution; these are
based on the previous line having a factor ofiaz instead of2iaz>.

This has poles at

z(]:%(—azl:\/m>

where the only one inside the unit circle is the plus rootsTgives residue:

b
iva® — b2
So

2 do _ 2mb
/0 a+bsinf Va2 — b2
as long asi® > b2,

Unfortunately, the abovecannot be correct, as a simple test shows. If we
double a and b, then the original integral decreases by a factor of 2, whileur
answer here does not change. Thus themaust be an algebra error. Below is
the corrected argument.
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Consider the integral

/27r do
o a+bsinf

Making the change of variables= ¢, e = 1/z, dz = izdf, df = —idz/z,
we find

g —idz 2dz
/O a+bsing A Ha+b(z—1/2)/2i) L b(2i(a/b)z + 22 — 1)

where~y is 0D (ie, v is the unit circle centered at the origin). From the quadrati
formula, we see that the integrand has poles at

w=i{5 /)

where the only one inside the unit circle is the plus root. dmpute the residue,
we use the following fact: ifA(z) = B(z)/C(z) and C(z) is a holomorphic
function with a simple zero af, and B(z) is holomorphic, then the residue at
is justB(zy)/C’(z). This gives a residue of

ib\/(3)? —1
So

/2” do 27
o a+bsind /a2 —p2
as long as:?> > »? (remember that the residue formula requires the integriaéto

multiplied by 1/2x4, thus in our case we must multiply the residue2ay as our
integral was unadorned).

Alternatively, if we factor out & from the denominator we have

l/27r d@
bJ, (a/b)+sin

This is solved exactly like the problem on the midterm, exéegtead of having
a + sin # we now havga/b) + sin 6, with an extra factor of /b outside. Thus the

answer is just
2w 2

1
V-1 Ve @

55




Notice this solution has all the desired properties. It ddesake sense fou| <
|b|. Forb fixed anda — oo it converges t@r/a, et cetera. It is always good to do
these quick consistency checks.

8 Homework #8: Xiong, Webster, Wilcox

HW: Due Tuesday, November 23rd: DO ANY FIVE OUT OF THE FOL-
LOWING SIX: IF YOU DO MORE, THAT'S GOOD BUT ONLY THE FIRST
FIVE WILL BE GRADED. (1) Let Omega be the subset of the complexplane
of all z = x+iy with |x| < |y|. Does there exist a logarithm on Omaga? If yes,
what does the image of Omega under the logarithm look like? (2Let Omega
be the region from (4); is Omega conformally equivalent to tle unit disk?
Prove your assertion. Hint: remember the full definition of what it means to
be simply connected. (3) Let Omega be the subset of the complelane of all
z =x +iy with |x| < |y| + 1. Conformally map Omega onto an open siset of
the disk — you must give an explicit form for the map. (Note: The Riemann
Mapping Theorem asserts that you can get a map that is onto thdisk; here
you are just being asked to get a map that is holomorphic and 1). (4) Evalu-
ate [ cos(x)™dx, where m is a positive integer. (5) Evaluatef, (1 — 22)"dx,
where nis a positive integer. Hint: Let x = Sin[theta], dx = Ccs[theta] d theta.
(6) [;* log(x)dx/(1 +a?).

Problem: LetQ = {z =2+ iy € C : |z| < |y|}. Does there exist a logarithm
on (). If yes, what does the image ©funder the logarithm look like?

Solution: First note that(? contains the imaginary axis save the origin. Now
imagine the lineg = +x in the plane.(2 looks like the open hourglass strictly
between the lines and containing the imaginary axis. Ndtiatf2 C C\ (—oo, 0],

we can take the principal branch of the logarithm and usedkgiction of this
logarithm to€2 (see Chapter 3, Theorem 6.1 in the book). To see the image of
under this logarithm, write = re with » > 0 and|f| < =, and then we have
log z = log r +i6 wherelog r is the standard logarithm on the positive reals. Note
that for example-i would be writtenl - e~"/2. Evaluating at some test points, we
see

log(ei) = log(e*™™/?) = 1 +in/2
log(e /4 = 1 4 im /4
log(—ei) =1 —1im/2,
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etc. Evaluating points along the boundary lines shows usthi@image of()
under this logarithm is two horizontal strips, defined by

1og[9]:{z:x+z‘ye<c)ye (‘T?”T_T”)u@%”)}

Problem: Let (2 be the region from Problem 1. $sconformally equivalent to the
unit diskD? Prove your assertion.

O

Solution: € is not conformally equivalent t sincef? is not simply connected
due to the hole at the origin. Citing HWw#3, being simply connected is necessary
for €2 to be uniformly equivalent t@®.

A simple illustration: we may choose one pointe (2 N H (the upper-half
complex plane) and another poittin the lower half. Suppose thét is con-
formally equivalent taD, then3 a conformal mapf : Q@ — D. If we draw a
continuous curvey connectingf(a) and f(b) in D, we may use the reverse con-
formal mapf~! : D — Q to map~ into  and still obtain a continuous curve.
However, sincé) excludes the origin, it is impossible to draw a continuouveu
in Q connecting: andb. O

Problem: Let Q2 be the set from Problem 1. Conformally m&ponto an open
subset of the (unit) disk — you must give an explicit form foe thap. (Note: The
Riemann Mapping Theorem asserts that you can get a map thiataghe disk;
here you are just being asked to get a map that is holomorphid ).

Solution: Define a mapf; : Q — f1(2) € C by
fl(Z) =z + 2010.

Clearly, f; is conformal, andf;(€2) lies outside the unit disk. Define a mgp :
C\ D — C be defined

f2(z) = %7

which conformally maps regions outside the disk onto regjioside of the disk.
Thus, f2(f1(£2)) lies inside the disk. Let

1
f(z) = folfi(2)) = ~ 12010
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As desired,f maps2 conformally ontofs(f1(£2)) C D, which is open becauge
is open and f is continuous. O

Problem: Evaluate
/Ozw(cos(x))mdx,
wherem € N,.
Solution: Begin by setting: = 6 and applying Euler’s formula for cosine.

2m 2m 0 —if\ ™
/ (cos(x))"dx = / e re’ do
0 0 2

Let z = ¢. Notice that ag) goes from0 to 2, » travels around the unit circle.
We then have

dz = i do
dz
df = —
7:629
= —iz 1 dz,

and substituting yields

/27r (ele_'_e—le)mde:/ (Z_'_Z_l)mdz
0 2 |2|=1 2

wherea,, is the coefficient ok ~! in

£

m
k=0

58



If mis odd, thems,,, = 0 and our integral i9. If m is even, then

= ()

and our integral is

Problem: Evaluate

1
/ (1 — 2*)"du,
0

Solution: Note that we could expand using the binomial formula and powe
through some algebra. Instead, we translate to the uniecaed use complex
analysis and recurrence relations to simplify the computatSo letz = sin 6
whered € [0, 5], and thendz = cos #df and notel — x* = cos® §. Substituting
yields

wheren € N,.

1 3
/ (1 —2*)"dr = / (cos 0)*"1dp.
0 0

Now write

jus

I,= /2(0089)2"+1d9
0

for n € N, and note that

uy

Iy = /2 cos 0d6
0

s
. 2
=sinf

0
=1
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Then forn > 1, we have
(cos 0)*" 3 = (cos 0)*" (1 — (sin 0)?),

thus

I = /2(0089)2n+3d9
0

jus

:/02

jus

(cos 0)*"1dh — /2(0086’)2"+1(sin6’)2d9,

0

and observe

/2 (cos 0)*"1dh = I,,.
0
Now letu = sin § anddv = (cos #)***! sin 6, thendu = cos 6df and

(COS 9) 2n+2

S VD

Then using integration by parts, we have

J

SE]

(cos 0)*" 1 (sin 0)*df = uv — /vdu

_(cos§)m+2] 2 1 /g )
= — g———— 0)*+3d6.
{Sm M2 |, 2mt2), (cos )
Evaluating the left term we find
2n+27 %
sl
2n+2 |,

and we are left with

s

! /2(005 0)*"+3do = L1
0

2n + 2 2n +2°
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In the end we have,

]n-l—l
L, =1,— ,
o on + 2
2n + 2
SO [y =——-I,
+1 2n+3
. 2 2n — 2 2
and finally, I, = L - I
2n+1 2n-—1 3
_ (@n)N
(2n+ 1)

While we could try to solve this problem by replacing the oesiwithz and
1/z, that unfortunately leads to a bit of algebra as the regukipression won't
just be integrals of* for k an integer, but rather fa% (or 4k, depending on how
clever we are with our choice of variables) an integer.

0

Problem: Evaluate

> 1
| 2
0o 1+ a2

Solution: * Rather than resort to the branch cut method, whose details hl-
ready been expos&dwe apply the Cauchy residue formula more directly, using
the indented semicircle contour. Note that this requires e take advantage
of the symmetry of our integrand. In particular, it is easiljegrable along the
negative real axis. So, let

log z
&=
(where we take the branch cut for the log to be along the negiaiaginary axis)
and lety = ~; + v + 3 + 74, Wherev, is the line segment along the positive real
axis frome to R, 7, is the upper half semicircle of radidswith counterclockwise
orientation,y; the segment from- R to —e and~, the upper half semicircle of

3A very similar integral is done via the branch cut method opgsal0 and 11 of the wikipedia
printout handed out in class if you're interested.
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radiuse and with clockwise orientation. We will show that the intalgralongy.
and-~, go to zero in the limit — 0 and R — oo. Then we may evaluate the
integral by collecting terms and computing residues. Wepumthe punchline
first.

Note thatf has a simple pole at = 4, and (applying Theorem 1.4 from
Chapter 3) the residue there is

: : _log(2)
lim(z —4)f(2) = lim o
log(7)
2
log(1) + 5

And when applying the residue theorem, we will need

2mi Z resy(zo) = 2mi - % = %

polesz(

Now consider the integral oveg, and note that for € R, with z < 0, we have
log z = log |z| 4 im where thdog on the right hand side is taken to be the standard
logarithm for the positive reals. Then

O logz
dz = d
Km f(Z) . /—oo 1+ 22 '

/°° logx +im
= ————dx
0 1+.T2

> logx < 1
= d ' ——d
/0 T+ 22 9:+27r/0 T+ 22 x

ool 2
T
o 1+ a2 2

Then if we can show that the integrals ower+ -, vanish in the limit, we will
have by Cauchy’s residue theorem that

. 9 e’} 1 -2
E:/ f(z)dzz?/ %dw#—i,
2 Y1473 0 I+ 2
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at which point we may conclude

1
[l
0o 14 a2

Now on to show that the required integrals vanish. We begihwi. We have

log z
f(z)dz = / dz,
[m o L2

and then letting = ee, dz = iee”®df andd € [0, ]

™ log(ee?) .,
/; f(z) dZ = /(; ﬁ266 0 d@
2

Then we note that for our branch of the logarithiog(ec?’) = log € + i where
the log on the right is the standard, and next take absolltles#o see

loge+i6’
\loge\ +
- 1—e

z)dz

< em max
0<0<m

Now citing the fact thatim._,o eloge = 0, we see that this integral vanishes in
the limit. Moving more quickly through,, we see

™ log(Re) _ .,
— . do
/ Iz /0 1+ RZGMR © ’

and so in absolute value we have

|log R| + 7

?)dz R?—1

<TR——

Thus the integral grows likBog R)/R in the limitasR — oo, and by I'Hopital’s
rule, this goes to 0. So the integrals oygiand~, vanish as claimed, and we now
have that the original integral is also 0.

O
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