H_. Preliminaries to Complex
Analysis

The sweeping development of mathematics during the
last two centuries is due in large part to the introduc-
tion of complex numbers; paradoxically, this is based
on the seemingly absurd notion that there are num-
bers whose squares are negative,

E. Borel, 1952

This chapter is devoted to the exposition of basic preliminary material
which we use extensively throughout of this book.

We begin with a quick review of the algebraic and analytic properties
of complex numbers followed by some topological notions of sets in the
complex plane. (See also the exercises at the end of Chapter 1 in Book 1.}

Then, we define precisely the key notion of holomorphicity, which is
the complex analytic version of differentiability. This allows us to discuss
the Cauchy-Riemann equations, and power series.

Finally, we define the notion of a curve and the integral of a function
along it. In particular, we shall prove an important result, which we state
loosely as follows: if a function f has a primitive, in the sense that there
exists a function F that is holomorphic and whose derivative is precisely
£, then for any closed curve ~

.\“.QNEN =0.

This is the first step towards Cauchy’s theorem, which plays a central
role in complex function theory.

1 Complex numbers and the complex plane

Many of the facts covered in this section were already used in Book L

1.1 Basic properties

A complex number takes the form z = 2 + iy where x and y are real,
and i is an imaginary number that satisfies i* = —1. We call x and y the
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real part and the imaginary part of z, respectively, and we write
rz=Re(z) and y=Im(z).

The real numbers are precisely those complex numbers with zero imagi-
nary parts. A complex number with zero real part is said to be purely
imaginary.

Throughout our presentation, the set of all complex numbers is de-
noted by €. The complex numbers can be visualized as the usual Fu-
clidean plane by the following simple identification: the complex number
z = +iy € C is identified with the point (z,y) € 2. For example, 0
corresponds to the origin and i corresponds to (0,1). Naturally, the =
and y axis of R? are called the real axis and imaginary axis, because
they correspond to the real and purely imaginary numbers, respectively.
(See Figure 1.)

Imaginary axis

z=z+iy=(z,9)

=
——
===

Heal axis

Figure 1. The complex plane

The natural rules for adding and multiplying complex numbers can be
obtained simply by treating all numbers as if they were real, and keeping
in mind that i* = —1. If z; = @) + iy and zp = T2 + iys, then

21 + 22 = (%1 + ®2) +ilyr + v2),
and also
2123 = (21 + ign ) {22 +y2)
=333 +iziye + iy T + Ciys
= (wyme — yay2) + i(w1y2 + y1a).
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If we take the two expressions above as the definitions of addition and
multiplication, it is a simple matter to verify the following desirable
properties:

o Commutativity: z; + 23 = 23 + z; and zy23 = 222 forall 2, 2,€C.

o Associativity: (2 +#) + 23 =21+ (22 + ) and (z122)z=
zy(2223) for z1,25,23 € C.

o Distributivity: z;{2z + 23) = z122 + 2123 for all 21,22,22 € C.

Of course, addition of complex numbers corresponds to addition of the
corresponding vectors in the plane R?. Multiplication, however, consists
of a rotation composed with a dilation, a fact that will become transpar-
ent once we have introduced the polar form of a complex number. At
present we observe that multiplication by i corresponds to a rotation by
an angle of m/2.

The notion of length, or absolute value of a complex number is identical
to the notion of Euclidean length in B2, More precisely, we define the
absolute value of a complex number z = = + iy by

l2l = (2 + )72,

s0 that |z| is precisely the distance from the origin to the point (z,y). In
particular, the triangle inequality holds:

lz+w| < |2|+|w| forall z,weC.

We record here other useful inequalities. For all z € C we have both
|Re(2)| < |z| and |Im(z)| < |2|, and for all z,w € C

Izl = fwli < |z — -

This follows from the triangle inequality since
lo] < le—w|+jw| and |w| <|z—wj+]z
The complex conjugate of z = x + iy is defined by
Z=z—iy,
and it is obtained by a reflection across the real axis in the plane. In

fact a complex number z is real if and only if z =73, and it is purely
imaginary if and only if z = -2,
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The reader should have no difficulty checking that

Z+Zz
2

Re(z) = and Im(z) = ;
Also, one has

2=2% and as a consequence

= —5 whenever z # 0.

1 z
|z =
z |7

Any non-zero complex number z can be written in polar form
z=re",

where r > 0; also # € R is called the argument of z (defined uniquely
up to a multiple of 27) and is often denoted by arg z, and

€% = cosf +isiné.
Since |e*| = 1 we observe that r = |z|, and 8 is simply the angle (with

positive counterclockwise orientation) between the positive real axis and
the half-line starting at the origin and passing through 2. (See Figure 2.)

z=re?

Figure 2. The polar form of a complex number

Finally, note that if z = re®® and w = se*?, then
zw = rse0te)

so multiplication by a complex number corresponds to a homothety in
R? (that is, a rotation composed with a dilation).
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1.2 Convergence

We make a transition from the arithmetic and geometric properties of
complex numbers described above to the key notions of convergence and
limits.

A sequence {z1,22,...} of complex numbers is said to converge to
weCif

lim |z, —w| =0, andwewrite w= lim z,.

00 T DO
This notion of convergence is not new. Indeed, since absolute values in
C and Euclidean distances in R? coincide, we see that 2, converges to w
if and only if the corresponding sequence of points in the complex plane
converges to the point that corresponds to w.

As an exercise, the reader can check that the sequence {z,} converges
to w if and only if the sequence of real and imaginary parts of z,, converge
to the real and imaginary parts of w, respectively.

Since it is sometimes not possible to readily identify the limit of a
sequence (for example, limy .o MUWHH 1/n%), it is convenient to have a
condition on the sequence itself which is equivalent to its convergence. A
sequence {z,} is said to be a Cauchy sequence (or simply Cauchy) if

|2n — 2m| — 0 as n,m — oc.

In other words, given € > 0 there exists an integer N > 0 so that
|20 — 2Zm| < € whenever n,m > N. An important fact of real analysis
is that R is complete: every Cauchy sequence of real numbers converges
to a real number.! Since the sequence {z,} is Cauchy if and only if the
sequences of real and imaginary parts of z,, are, we conclude that every
Cauchy sequence in C has a limit in €. We have thus the following result.

Theorem 1.1 C, the complex numbers, is complete.

We now turn our attention to some simple topological considerations
that are necessary in our study of functions. Here again, the reader will
note that no new notions are introduced, but rather previous notions are
now presented in terms of a new vocabulary.

1.3 Sets in the complex plane

If zp € C and r > 0, we define the open disc D.(z) of radius r cen-
tered at z; to be the set of all complex numbers that are at absolute

I This is sometimes called the Bolzano-Weierstrass theorem.
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value strictly less than 7 from zg. In other words,
Dr(z)={2€C: |z -zl <r},

and this is precisely the usual disc in the plane of radius r centered at
zo. The closed disc D,(z) of radius r centered at z; is defined by

Do(z)={z€C:|z—z| <1},
and the boundary of either the open or closed disc is the circle
Colzg) ={z€C:|z—z| =7}

Since the unit disc (that is, the open disc centered at the origin and of
radius 1) plays an important role in later chapters, we will often denote
it by I,

D={zeC: |z <1}.

Given a set 2 C C, a point zp is an interior point of {2 if there exists
r > 0 such that

Dy (z) C Q2.

The interior of £ consists of all its interior points. Finally, a set {2 is
open if every point in that set is an interior point of Q2. This definition
coincides precisely with the definition of an open set in R%,

A set 0 is closed if its complement Q¢ = C — 2 is open. This property
can be reformulated in terms of limit points. A point z € C is said to
be a limit point of the set 0 if there exists a sequence of points 2z, € Q2
such that z, # z and lim,_ .o 2, = 2. The reader can now check that a
set is closed if and only if it contains all its limit points. The closure of
any set £ is the union of © and its limit points, and is often denoted by
Q.

Finally, the boundary of a set Q is equal to its closure minus its
interior, and is often denoted by 9.

A set Q is bounded if there exists M > 0 such that |z| < M whenever
2 € . In other words, the set {2 is contained in some large disc. If 2 is
bounded, we define its diameter by

diam(f2) = sup |z —w|.
z,well

A set {2 is said to be compact if it is closed and bounded. Arguing
as in the case of real variables, one can prove the following,.
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Theorem 1.2 The set £ C C is compact if and only if every sequence
{za} C Q has a subsequence that converges to a point in §2.

An open covering of  is a family of open sets {U,} (not necessarily
countable) such that

2c |V

In analogy with the situation in R, we have the following equivalent
formulation of compactness.

Theorem 1.3 A set §) is compact if and only if every open covering of
 has a finite subcovering.

Another interesting property of compactness is that of nested sets.
‘We shall in fact use this result at the very beginning of our study of
complex function theory, more precisely in the proof of Goursat’s theorem
in Chapter 2.

Proposition 1.4 IfQ} D09 D - Dy, D -+ is a sequence of non-empty
compact sets in C with the property that

diam({),) =0 asn — oo,

then there exists a unique point w € C such that w € O, for all n.

Proof. Choose a point z, in each {),,. The condition diam({2,) — 0
says precisely that {z,} is a Cauchy sequence, therefore this sequence
converges to a limit that we call w. Since each set 2, is compact we
must have w € §2,, for all n. Finally, w is the unique point satisfying this
property, for otherwise, if w' satisfied the same property with w' # w
we would have |w —w'| > 0 and the condition diam(f2,) — 0 would be
violated.

The last notion we need is that of connectedness. An openset 2 C Cis
said to be connected if it is not possible to find two disjoint non-empty
open sets £2; and 5 such that

Q=10 U,

A connected open set in C will be called a region. Similarly, a closed
set F'is connected if one cannot write F = F; U 5 where F} and F, are
disjoint non-empty closed sets.

There is an equivalent definition of connectedness for open sets in terms
of curves, which is often useful in practice: an open set {2 is connected
if and only if any two points in £ can be joined by a curve v entirely
contained in 2. See Exercise 5 for more details.
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2 Functions on the complex plane
2.1 Continuous functions

Let f be a function defined on a set 2 of complex numbers. We say that
f is continuous at the point zg € £ if for every € > 0 there exists § > 0
such that whenever z € Q and |z — 25| < & then |f(z) — f(20)| <e. An
equivalent definition is that for every sequence {z1, 22,...} C Q such that
lim z, = zg, then lim f(z,) = f(z0).

The function f is said to be continuous on Q if it is continuous at
every point of €. Sums and products of continuous functions are also
continuous.

Since the notions of convergence for complex numbers and points in
R®? are the same, the function f of the complex argument z = x + iy is
continuous if and only if it is continuous viewed as a function of the two
real variables z and y.

By the triangle inequality, it is immediate that if f is continuous, then
the real-valued function defined by z — |f(z)| is continuous. We say that
f attains a maximum at the point z; € £ if

|f(2)| € |f(z0)| forall z €,

with the inequality reversed for the definition of a minimum.

Theorem 2.1 A continuous function on a compact set () is bounded and
attains a mazimum and minimum on {1,

This is of course analogous to the situation of functions of a real vari-
able, and we shall not repeat the simple proof here.

2.2 Holomorphic functions

We now present a notion that is central to complex analysis, and in
distinction to our previous discussion we introduce a definition that is
genuinely complez in nature.

Let £ be an open set in C and f a complex-valued function on 2. The
function f is holomorphic at the point z; € Q if the quotient

Zo+h) —

i [ERTREICH
converges to a limit when A — 0. Here h € C and h # 0 with 29 + h € {2,
s0 that the quotient is well defined. The limit of the quotient, when it
exists, is denoted by f'(20), and is called the derivative of f at zg:

gh___mNﬁ_u =it .»..ANQ + w.; - %ANQV

han h

2. Functions on the complex plane 9

It should be emphasized that in the above limit, h is a complex number
that may approach 0 from any direction.

The function f is said to be holomorphic on {2 if f is holomorphic
at every point of 2. If C is a closed subset of C, we say that f is
holomorphic on C if f is holomorphic in some open set containing C.
Finally, if f is holomorphic in all of C we say that f is entire.

Sometimes the terms regular or complex differentiable are used in-
stead of holomorphic. The latter is natural in view of (1) which mimics
the usual definition of the derivative of a function of one real variable.
But despite this resemblance, a holomorphic function of one complex
variable will satisfy much stronger properties than a differentiable func-
tion of one real variable. For example, a holomorphic function will actu-
ally be infinitely many times,complex differentiable, that is, the existence
of the first derivative will guarantee the existence of derivatives of any
order. This is in contrast with functions of one real variable, since there
are differentiable functions that do not have two derivatives. In fact more
is true: every holomorphic function is analytic, in the sense that it has a
power series expansion near every point (power series will be discussed
in the next section), and for this reason we also use the term analytic
as a synonym for holomorphic. Again, this is in contrast with the fact
that there are indefinitely differentiable functions of one real variable
that cannot be expanded in a power series. (See Exercise 23.)

EXAMPLE 1. The function f(z) = z is holomorphic on any open set in
C, and f'(z) = 1. In fact, any polynomial

plz) =ap+arz+- - +apz"

is holomorphic in the entire complex plane and

p(z) = a1 +---+naz"".

This follows from Proposition 2.2 below.

ExAMPLE 2. The function 1/2 is holomorphic on any open set in € that
does not contain the origin, and f'(z) = —1/z%

ExaMPLE 3. The function f(z) = Z is not holomorphic. Indeed, we have

flao+h) = f(z0) _ R

h h

which has no limit as A — 0, as one can see by first taking h real and
then h purely imaginary.
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An important family of examples of holomorphic functions, which
we discuss later, are the power series. They contain functions such as
e*,sin z, or cos z, and in fact power series play a crucial role in the theory
of holomorphic functions, as we already mentioned in the last paragraph.
Some other examples of holomorphic functions that will make their ap-
pearance in later chapters were given in the introduction to this book.

It is clear from (1) above that a function f is holomorphic at zp € 2
if and only if there exists a complex number a such that

@) f(z0 + h) = f(20) — ah = hap(h),

where 1 is a function defined for all small A and limy_o4(h) = 0. Of
course, we have a = f'(z). From this formulation, it is clear that f is
continuous wherever it is holomorphic. Arguing as in the case of one real
variable, using formulation (2) in the case of the chain rule (for exam-
ple), one proves easily the following desirable properties of holomorphic
functions.

Proposition 2.2 If f and g are holomorphic in (2, then:
(i) f + g is holomorphic in Q and (f +g) = f' +4'.
(ii) fg is holomorphic in Q and (fg)' = f'g+ fg'-
(iii) If g(z0) # 0, then f/g is holomorphic at z and

(f/9) = hﬁm.

Moreover, if f : Q2 — U and g: U — C are holomorphic, the chain rule
holds

(go f)(2) =4 (f(z))f'(z) forallzefl

Complex-valued functions as mappings

We now clarify the relationship between the complex and real deriva-
tives. In fact, the third example above should convince the reader that
the notion of complex differentiability differs significantly from the usual
notion of real differentiability of a function of two real variables. Indeed,
in terms of real variables, the function f(z) = Z corresponds to-the map
F: (z,y) — (z,—y), which is differentiable in the real sense. Its deriva-
tive at a point is the linear map given by its Jacobian, the 2 x 2 matrix
of partial derivatives of the coordinate functions. In fact, F" is linear and
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is therefore equal to its derivative at every point. This implies that F' is
actually indefinitely differentiable. In particular the existence of the real
derivative need not guarantee that f is holomorphic.

This example leads us to associate more generally to each complex-
valued function f = u + iv the mapping F(z,y) = (u(z,y), v(z,y)) from
R? to R

Recall that a function F(z,y) = (u(z,y),v(z,y)) is said to be differ-
entiable at a point Py = (zg,%o) if there exists a linear transformation
J : R? — R? such that

|F(Po + H) — F(R) — J(H)|

—0 as|H| —0, HeR?
] [H]

3

Equivalently, we can write
F(Py+ H) — F(Py) = J(H) + |H|¥(H),

with |¥(H)| — 0 as |H| — 0. The linear transformation J is unique and
is called the derivative of F at Py. If F' is differentiable, the partial
derivatives of u and v exist, and the linear transformation J is described
in the standard basis of R? by the Jacobian matrix of F'

) [ Bu/dz Bu/dy
J=Jr(z,y) = A Bv/0x Bv/dy v

In the case of complex differentiation the derivative is a complex number
f'(z0), while in the case of real derivatives, it is a matrix. There is,
however, a connection between these two notions, which is given in terms
of special relations that are satisfied by the entries of the Jacobian matrix,
that is, the partials of u and v. To find these relations, consider the limit
in (1) when h is first real, say h = hy +ihe with hy = 0. Then, if we
write z = x + iy, 2o = To + iy0, and f(z) = f(z,y), we find that

f(z0) = lim o + wr@”w — f(®o,50)

mﬁu&_

Il

where 0/8z denotes the usual partial derivative in the z variable. (We fix .
yo and think of f as a complex-valued function of the single real variable
z:) Now taking h purely imaginary, say h = the, a similar argument
yields '
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f'(z0) = lim f(@o,p0 + ..“N — f(zo,30)
18
=% m“ (20),

where /0y is partial differentiation in the y variable. Therefore, if f is
holomorphic we have shown that

o _ 104
dr  idy
Writing f = u + 1w, we find after separating real and imaginary parts

and using 1/ = —i, that the partials of u and v exist, and they satisfy
the following non-trivial relations

O B9 i .
dz Oy dy ~ Oz
These are the Cauchy-Riemann equations, which link real and complex
analysis.
We can clarify the situation further by defining two differential oper-

ators
o _1(0 10) . 9 _1(8 10
9z 2\oz "iay) ¢ wmT2\Gr iay)
Proposition 2.3 If f is holomorphic at zy, Sm.a
af ' Sﬁ
L) =0 and  (20) = 9L (20) = 232 (a0).

Also, if we write F(z,y) = f(z), then F is differentiable in the sense of
real variables, and

det Jr (2o, y0) = |f'(20)|*.

Proof. Taking real and imaginary parts, it is easy to see that the
Cauchy-Riemann equations are equivalent to 8f/8z = 0. Moreover, by
our earlier observation

fllz0) == ﬁm..hﬁ V+wﬁﬁm&v
W.MANQV
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and the Cauchy-Riemann equations give 8f/dz = 20u/0z. To prove
that F' is differentiable it suffices to observe that if H = (h1,hs) and
h = hy + ihg, then the Cauchy-Riemann equations imply
7 =|=——3 i = f Hﬁq
.\.ﬁﬁac.m\oummw A@.‘B ﬁm@. ANWH +-.~QV bn ANQW

where we have identified a complex number with the pair of real and
imaginary parts. After a final application of the Cauchy-Riemann equa-
tions, the above results imply that

(4)
dudv  wdu_(ou)® (8u)’
%Qlﬂ?c&lmlwwwlﬂ@ AMV +A®|Hv ¥

So far, we have assumed that f is holomorphic and deduced relations
satisfied by its real and imaginary parts. The next theorem contains an
important converse, which completes the circle of ideas presented here.

? 2
25, =|f'(20)I?

Theorem 2.4 Suppose [ = u+iv is a complez-valued function defined
on an open set . Ifu and v are continuously differentiable and satisfy
the Cauchy-Riemann equations on Q, then f is holomorphic on @ and

f(z) = 85/0z.

Proof. Write
u(z + hy,y + ho) —ulz,y) = W? + man + [hl1 (R)
and
v(z + hy, ¥+ ho) —v(z,y) = m? + @3 + |hlpz(h),

where 1;(h) — 0 (for j = 1,2) as |h| tends to 0, and h = hy + ihg. Using
the Cauchy-Riemann equations we find that
du . Ou ;
flz+h)— f(z) = A| = ,mw.v (h1 + iha) + |hly(R)
where ¥(h) = 1 (h) + 12(h) — 0, as |h| — 0. Therefore f is holomorphic
and

ou Of
Fl(z)= = 5
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2.3 Power series

The prime example of a power series is the complex exponential func-
tion, which is defined for z € C by

When z is real, this definition coincides with the usual exponential func-
tion, and in fact, the series above converges absolutely for every z € C.
To see this, note that

.N..;

nl

_ "
Tl

50 |e?| can be compared to the series Y [z[*/n! = e!*l < 00. In fact, this
estimate shows that the series defining e is uniformly convergent in every
disc in C.

In this section we will prove that e* is holomorphic in all of C (it is
entire), and that its derivative can be found by differentiating the series
term by term. Hence

o o [+ +}
(e*) = M :N: : = M ¥ i
nl ml! !
n=0

and therefore e is its own derivative.
In contrast, the geometric series

oe
M 2™
n=0

converges absolutely only in the disc |z| < 1, and its sum there is the
function 1/(1 — z), which is holomorphic in the open set C — {1}. This
identity is proved exactly as when z is real: we first observe

N = ”_.|N>.-+_.
MN U HNQ
3”0

and then note that if |z| < 1 we must have limy_,, 2Vt = 0.
In general, a power series is an expansion of the form

(5) M anz",

1
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where a, € C. To test for absolute convergence of this series, we must
investigate

o0

Y laal |,

n=0

and we observe that if the series (5) converges absolutely for some z,
then it will also converge for all z in the disc |z| < |z0|. We now prove
that there always exists an open disc (possibly empty) on which the
power series converges absolutely.

Theorem 2.5 Given a power series Mu”ouo a,z", there ezists 0 €< R < 0o
such that:

(i) If |2| < R the series converges absolutely.
(it) If |z] > R the series diverges.

Moreover, if we use the convention that 1/0 = co and 1/00 =0, then R

is given by Hadamard’s formula

1/R = limsup |a,|"/™.

The number R is called the radius of convergence of the power series,
and the region |z| < R the disc of convergence. In particular, we
have R = co in the case of the exponential function, and R = 1 for the
geometric series.

Proof. Let L =1/R where R is defined by the formula in the state-
ment of the theorem, and suppose that L # 0, 00. (These two easy cases
are left as an exercise.) If |z| < R, choose € > 0 so small that

(L+e)lzl=r<1.
By the definition L, we have |a,|'/™ < L + € for all large n, therefore
lan| 2™ < {(Z+€)l2l}" =r".

Comparison with the geometric series ) r" shows that 3 a,2" con-
verges.

If |z| > R, then a similar argument proves that there exists a sequence
of terms in the series whose absolute value goes to infinity, hence the
series diverges.

Remark. On the boundary of the disc of convergence, |z| = R, the sit-
uation is more delicate as one can have either convergence or divergence.
(See Exercise 19.)
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Further examples of power series that converge in the whole complex
plane are given by the standard trigonometric functions; these are
defined by

oo oo
zin Z2ntl

SmNuMuTcaﬁa_‘ g asnumﬁusaa‘

n=0 n=0

and they agree with the usual cosine and sine of a real argument whenever
z€R. A simple calculation exhibits a connection between these two
functions and the complex exponential, namely,

mmu + m!;.u mn.ulm.lum
cosz = — g and sinz= 5
These are called the Euler formulas for the cosine and sine functions.

Power series provide a very important class of analytic functions that
are particularly simple to manipulate.

Theorem 2.6 The power series f(z) = oo, an2" defines a holomor-
phic function in its disc of convergence. The derivative of f is also a
power series obtained by differentiating term by term the series for f,
that is,

fiz)= MgsuaL.
n=>0

Moreover, f' has the same radius of convergence as f.

Proof. The assertion about the radius of convergence of f' follows
from Hadamard’s formula. Indeed, lim,,_, n!/™ = 1, and therefore

limsup |a,|"/"* = limsup |na,|"/",
so that }_ @,2™ and 3 na,2" have the same radius of convergence, and

hence so do ¥ a,z™ and }_ na,z"t.
To prove the first assertion, we must show that the series

o0
g(z) = Mzaawal
n=0

gives the derivative of f. For that, let R denote the radius of convergence
of f, and suppose |z < r < R. Write :

f(2) = Sn(2) + En(2),
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where
N o0
Sn(z) = M a,z" and En(z)= M an2".
n=0 n=N+1

Then, if k is chosen so that |zo + k| < r we have

2§+ :N |.2mﬂ| Eua_n ﬁmzﬂg + }M |mz?&l m.rmucuv

E + h) — En(z
R e
Since a™ — b = (@ — b)(a™ ! +a"2b+ - -+ ab" "% + b""1), we see that

= <]

<3 fonfnrnt,

n=~N+1

oo

< M [an

n=N+1

En(zo + k) — En(20)
h

(20 + h)" — 23
h

where we have used the fact that |z| < r and |zp + k| < r. The expres-
sion on the right is the tail end of a convergent series, since g converges
ahsolutely on |z] < R. Therefore, given € > 0 we can find N} so that
N > N; implies

En(z0 + h) — En(20)

h < €.

Also, since limp oo Sy (20) = g(20), we can find Nz so that N > N
implies

1Sk (20) — g(z0)| <.

If we fix N so that both N > N; and N > N; hold, then we can find
& > 0 so that |h| < d implies

Sn AND + Dv - .wzhuau
h

— Sy(z0)| <e,

simply because the derivative of a polynomial is obtained by differenti-
ating it term by term. Therefore,

fz0+h) — f(20)

b - glz0)] < 3¢

whenever |h| < 4, thereby concluding the proof of the theorem.

Successive applications of this theorem vield the following.
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Corollary 2.7 A power series is infinitely complex differentiable in its
disc of convergence, and the higher derivatives are also power series ob-
tained by termwise differentiation.

We have so far dealt only with power series centered at the origin.
More generally, a power series centered at zy € C is an expression of the
form

f(2) =) an(z—2)™
n=0

The disc of convergence of f is now centered at zg and its radius is still
given by Hadamard’s formula. In fact, if

oo
m_mnu_ = M anz",
n=0

then f is simply obtained by translating g, namely f(z) = g{w) where
w = z — zg. As a consequence everything about g also holds for f after
we make the appropriate translation. In particular, by the chain rule,

Pl =gty =" nmls=2)"L
n=0

A function f defined on an open set {2 is said to be analytic (or have
a power series expansion) at a point z € £ if there exists a power
series Y an(z — 29)™ centered at zg, with positive radius of convergence,
such that

flz) = Ma:ﬁu —zp)"  for all z in a neighborhood of zp.

n=0

If f has a power series expansion at every point in {2, we say that f is
analytic on 2. :

By Theorem 2.6, an analytic function on {2 is also holomorphic there.
A deep theorem which we prove in the next chapter says that the converse
is true: every holomorphic function is analytic. For that reason, we use
the terms holomorphic and analytic interchangeably.

3 Integration along curves

In the definition of a curve, we distinguish between the one-dimensional
geometric obiect in the plane (endowed with an orientation). and its
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parametrization, which is a mapping from a closed interval to C, that is
not uniquely determined.

A parametrized curve is a function z(t) which maps a closed interval
[2,b] C R to the complex plane. We shall impose regularity conditions
on the parametrization which are always verified in the situations that
occur in this book. We say that the parametrized curve is smooth if
2/(t) exists and is continuous on [a,b], and 2/(t) # 0 for ¢ € [a,d]. At the
points ¢t = @ and ¢ = b, the quantities 2'(a) and 2/(b) are interpreted as
the one-sided limits

o HaER =) e 2(b+h) — 2(b)

= »__1 h K=o h
h >

#(a)

ea
-
A
]

In general, these quantities are called the right-hand derivative of z(t) at
a, and the left-hand derivative of z(t) at b, respectively.

Similarly we say that the parametrized curve is piecewise-smooth if
2z is continuous on [a,b] and if there exist points

a=g<y < --<a,=b,

where z(t) is smooth in the intervals [ak, ap41]. In particular, the right-
hand derivative at a; may differ from the left-hand derivative at a; for
k=1,...,n—1.

Two parametrizations,

z:[a,b] = C and Z:[e,d —C,

are equivalent if there exists a continuously differentiable bijection
5+ t(s) from [, d] to [a,b] so that t'(s) > 0 and

: #(s) = 2(t(s)).

The condition #'(s) > 0 says precisely that the orientation is preserved:
as s travels from ¢ to d, then ¢(s) travels from a to b. The [amily of
all parametrizations that are equivalent to z(t) determines a smooth
curve v C C, namely the image of [a,b] under 2 with the orientation
given by z as ¢ travels from a to b. We can define a curve v~ obtained
from the curve v by reversing the orientation (so that v and 4~ consist
of the same points in the plane). As a particular parametrization for v~
we can take z~ : [a,b] — R? defined by

zZ(t)=zb+a—1).
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It is also clear how to define a piecewise-smooth curve. The points
z(a) and z(b) are called the end-points of the curve and are independent
on the parametrization. Since « carries an orientation, it is natural to
say that v begins at z(a) and ends at z(b).

A smooth or piecewise-smooth curve is closed if z{a) = z(b) for any
of its parametrizations. Finally, a smooth or piecewise-smooth curve is
simple if it is not self-intersecting, that is, z(t) # z(s) unless s = ¢, Of
course, if the curve is closed to begin with, then we say that it is simple
whenever z(f) # z(s) unless s =¢, or s =a and ¢ = b.

Figure 3. A closed piecewise-smooth curve

For brevity, we shall call any piecewise-smooth curve a curve, since
these will be the objects we shall be primarily concerned with.

A basic example consists of a circle. Consider the circle C,.(zq) centered
at zp and of radius r, which by definition is the set

Cr(z) ={2€C: [z—2|=r}

—_

The positive orientation (counterclockwise) is the one that is given by
the standard parametrization

z(t) = zg +re®, where t € [0,27],
while the negative orientation (clockwise) is given by
2(t) =z +re™,  wheret € [0,2n].

In the following chapters, we shall denote by C' a general positively ori-
ented circle.

An important tool in the study of holomorphic functions is integration
of functions along curves. Loosely speaking, a key theorem in complex
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analysis says that if a function is holomorphic in the interior of a closed
curve 7, then

and we shall turn our attention to a version of this theorem (called
Cauchy's theorem) in the next chapter. Here we content ourselves with
the necessary definitions and properties of the integral.

Given a smooth curve 7 in C parametrized by z: [a,b] = C, and f a
continuous function on v, we define the integral of f along « by

.\,“‘3& dz = .\Mo f(z()2'(t) dt.

In order for this definition to be meaningful, we must show that the
right-hand integral is independent of the parametrization chosen for «.
Say that Z is an equivalent parametrization as above. Then the change
of variables formula and the chain rule imply that

b d d
\huﬁsvu;s&u\. ZNE%KE&E&%ﬂ\ F(#(5))Z (s) ds.

This proves that the integral of f over -y is well defined.

If v is piecewise smooth, then the integral of f over v is simply the
sum of the integrals of f over the smooth parts of -, so if 2(t) is a
piecewise-smooth parametrization as before, then

n=1 ngp;
\ f(z)dz = MU \ F(z()2'(¢) dt.
gd k=0

ag

By definition, the length of the smooth curve - is

b
length(~y) = 4\» |2'(t)| dt.
Arguing as we just did, it is clear that this definition is also independent
of the parametrization. Also, if v is only piecewise-smooth, then its
length is the sum of the lengths of its smooth parts.

Proposition 3.1 Integration of continuous functions over curves satis-
fies the following properties:
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(i) It is linear, that is, if @, B € C, then

h (af () + B9(2)) dz = o \ f(z)dz+ 8 \ 9(2) da.

(ii) If v~ is vy with the reverse orientation, then

\,ﬂiavau =— \ﬁ H_ﬁnv dz.

(iii) One has the inequality

\q 1(z)dz

Proof. The first property follows from the definition and the linearity
of the Riemann integral. The second property is left as an exercise. For
the third, note that

7 \ f(z)ds

as was to be shown.

< sup |f(2)] - length(y).

ZEY

< sup |f((1))] \ |2/ (8)] dt < sup |£(2)] - length()

te(a,b) zEy

As we have said, Cauchy’s theorem states that for appropriate closed
curves -y in an open set ) on which f is holomorphic, then

,\ﬁnznuc.

The existence of primitives gives a first manifestation of this phenomenon.
Suppose f is a function on the open set Q. A primitive for fon Qs a
function F that is holomorphic on 2 and such that F'(z) = f(z) for all
zefl

Theorem 3.2 If a continuous function f has a primitive F in , and
v is a curve in Q that begins at w; and ends at wa, then

\ F(z) dz = F(w) — F(wy).
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Proof. If 7 is smooth, the proof is a simple application of the chain
rule and the fundamental theorem of calculus. Indeed, if z(t) : [a,b] — C
is a parametrization for , then z(a) = w; and 2z(b) = ws, and we have

]
\ fla)dz= \ F((t)2 () dt

b
= \ F )2 () dt

b
d
= \. = F(a(t)) dt
= F(z(b)) — F(z(a)).

If v is only piecewise-smooth, then arguing as we just did, we obtain
a telescopic sum, and we have

n—1
\ f)dz =Y Fla(ans)) - Fla(ar))

k=0 N
= F(z(a,)) — F(z(ag))
= F(2(b)) — F(2(a))-

Corollary 3.3 If v is a closed curve in an open set Q, and f is contin-
uous and has a primitive in §2, then

.\..«.2& dz=0.

This is immediate since the end-points of a closed curve coincide.

For example, the function f(z) = 1/z does not have a primitive in the
open set C — {0}, since if C is the unit circle parametrized by z(t) = e,
0 <t < 27, we have

i Nz_‘

\uxuv%u\o?ﬂ&umﬂ,wo.

In subsequent chapters, we shall see that this innocent calculation, which
provides an example of a function f and closed curve + for which .P flz)dz #
0, lies at the heart of the theory.

Corollary 3.4 If f is holomorphic in a region Q and f' =0, then f is
constant. g
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Proof Fix a point wg € Q. It suffices to show that f{w) = f(wp) for
all w € .

Since 2 is connected, for any w € {2, there exists a curve v which joins
wp to w. Since f is clearly a primitive for f’, we have

\ £(2) de = f(w) - f(wo).

By assumption, f' = 0 so the integral on the left is 0, and we conclude
that f(w) = f(wg) as desired.

Remark on notation. When convenient, we follow the practice of using
the notation f(z) = O(g(z)) to mean that there is a constant C' > 0 such
that |f(z)| < Clg(2)| for z in a neighborhood of the point in question.
In addition, we say f(z) = o(g{z)) when |f(2)/g(z)] — 0. We also write
f(z) ~ g(z) to mean that f(z)/g(z) — 1.

4 Exercises

1. Describe geometrically the sets of points z in the complex plane defined by the
following relations:

(8) |2— 21| = |2 — 22| where 2,2 € C.
(b) 1/z2=3%.

(c)-Re(z) = 3.

(d) Re(z) > c, (resp., > c) where c € R.
(e) Re(az +b) > 0 where a,b € C.

(f) |zl =Re(2) + 1.

(g) Im(z) =c withc€ R.

2. Let {-,-) denote the usual inner product in R%, In other words, if Z = (z1,31)
and W = (z3,y2), then

(Z,W) = z122 + 11Y2.
Similarly, we may define a Hermitian inner product (-,-) in C by

(z,w) = 2.

4. Exercises 25

The term Hermitian is used to describe the fact that (-,-) is not symmetric, but
rather satisfies the relation

(z,w) = (w,z) forall z,weC.
Show that

1
AN.EV = M—A\.«. e__.__u + T_.c_ Nv_ = Hw.mﬁk.»..\.?
where we use the usual identification z =  + iy € C with (z,y) € R*

3. With w = se'?, where 3 > 0 and ¢ € R, solve the equation z" = w in C where
n is a natural number. How many solutions are there?

4. Show that it is impossible to define a total ordering on C. In other words, one
cannot find a relation > between complex numbers so that:

(i) For any two complex numbers z, w, one and only one of the following is true:
Z-wW,WEZOrz=w.

(ii) For all 21,22, 23 € C the relation 2, = z; implies 21 + 23 = 22 + z3.
(iii) Moreover, for all 21, 22, za € C with 23 - 0, then 2; > 22 implies 2123 > 2223.

[Hint: First %&ﬂrm i > 0 is possible.]

5. A set {1 is said to be pathwise connected if any two points in € can be
joined by a (piecewise-smooth) curve entirely contained in £2. The purpose of this
exercise is to prove that an open set 1 is pathwise connected if and only if {2 is
connected.

(a) Suppose first that @ is open and pathwise connected, and that it can be
written as 2 = 0y U Q2 where 2, and {}; are disjoint non-empty open sets.
Choose two points wy € (4 and wg € 2 and let v denote a curve in 2
joining wy to wo. Consider a parametrization z : [0,1] — Q of this curve
with z(0) = w1 and 2(1) = w, and let

t*= sup {t:2(s) € forall0<s <t}
0<t<1

Arrive at a contradiction by considering the point z(¢*).

{(b) Conversely, suppose that {2 is open and connected. Fix a point w € {2 and
let Q1 C 2 denote the set of all points that can be joined to w by a curve
contained in §2. Also, let 022 C 2 denote the set of all points that cannot be
joined to w by a curve in Q2. Prove that both £, and Q2 are open, disjoint
and their union is 2. Finally, since £ is non-empty (why?) conclude that
= O as desired.
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The proof actually shows that the regularity and type of curves we used to define
pathwise connectedness can be relaxed without changing the equivalence between
the two definitions when (0 is open. For instance, we may take all curves to be
continuous, or simply polygonal lines.?

6. Let {2 be an open set in C and z € {}. The connected component (or simply
the component) of ! containing z is the set C. of all points w in  that can be
joined to z by a curve entirely contained in 0.

(a) Check first that C. is open and connected. Then, show that w € C; defines
an equivalence relation, that is: (i) z € C., (il) w € C; implies z € Cy, and
(iii) if w € C; and z € C¢, then w € C¢.

Thus §2 is the union of all its connected components, and two components
are either disjoint or coincide.

{b) Show that 0 can have only countably many distinct connected components.

+ () Prove that if £ is the complement of a compact set, then {1 has only one
unbounded component.

[Hint: For (b}, one would otherwise obtain an uncountable number of disjoint open
balls. Now, each ball contains a point with rational coordinates. For (c), note that
the complement of a large disc containing the compact set is connected.]

7. The family of mappings introduced here plays an important role in complex
analysis. These mappings, sometimes called Blaschke factors, will reappear in
various applications in later chapters.

(a) Let z,w be two complex numbers such that Zw # 1. Prove that

_ “Z2l<1 iflz<land fu| <1,
1-w=
. and also that
w—z
= i = )| = 1.
T 1 if|z|=1o0r jw|

[Hint: Why can one assume that z is real? It then suffices to prove that
(r—w)(r —®) < (1 —rw)(1-rw)
with equality for appropriate r and |w|.]
(b) Prove that for a fixed w in the unit disc I}, the mapping

w—z

11—z

F:zm

satisfies the following conditions:

2 A polygonal line is a plecewise-smooth curve which consists of finitely many straight

lina sarmante
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(i) F maps the unit disc to itself {that is, F : D — D), and is holomorphic.
(ii} F interchanges 0 and w, namely F(0) = w and F(w) = 0.
(iii) |F(z)]=1if|z]=1
(iv) F:D — D is bijective. [Hint: Calculate F o F']

8. Suppose U and V' are open sets in the complex plane. Prove thatif f: U — V
and g: V — C are two functions that are differentiable (in the real sense, that is,
as functions of the two real variables z and y), and h = go f, then

B8h Hgdf  dgdf

8z  8z08z 0z b=
and

8h _ B8gdf 89 df

8z 0:8z 9z 0%
This is the complex version of the chain rule.
9. Show that in polar coordinates, the Cauchy-Riemann equations take the form

Bu_1ov . 1o o
ar  rae raf ~  or’

Use these equations to show that the logarithm function defined by

logz =logr+if where z=re" with -t <@ <n

is holomorphic in the z.v.m._ou r>0and -w <@ <.

10. Show that
a 8 8
‘5w e O
where A is the Laplacian
g o
N % + %

11. Use Exercise 10 to prove that if f is holomorphic in the open set 2, then the
real and imaginary parts of f are harmonic; that is, their Laplacian is zero.

12, Consider the function defined by

flz+iy) = +/|z|lyl, whenever z,y € R.
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Show that f satisfies the Cauchy-Riemann equations at the origin, yet f is not
holomorphic at 0.

13. Suppose that f is holomorphic in an open set 2. Prove that in any one of the
following cases:

(a) Re(f) is constant;

(b} Im(f) is constant;

(c) |f] is constant;
one can conclude that f is constant.

14. Suppose {a.}5—, and {bn}_, are two finite sequences of complex numbers.
Let By = 3.%_, bn denote the partial sums of the series 3 b, with the convention

n=1

Bg = 0. Prove the summation by parts formula

N N-1
M“ a:?“nt@?lak@ELl MU ﬁns..r_lb.:vm:.

n=M n=M

15. Abel’s theorem. Suppose ¥.°7 | an converges. Prove that
o o0
3 n . =
._,I._muﬂA— M». an = M”na.
n=t n=1

[Hint: Sum by parts.] In other words, if a series converges, then it is Abel summable
with the same limit. For the precise definition of these terms, and more information
on summability methods, we refer the reader to Book I, Chapter 2.

16. Determine the radius of convergence of the series 3.~ ; an2" when:
(a) an = (logn)?

(b) an=mn!

2
(¢) an = wism

(d) an = (n)?/(3n)! [Hint: Use Stirling’s formula, which says that
nl ~ cn™ e ™ for some ¢ > 0..]

(e) Find the radius of convergence of the hypergeometric series

D_T...+:.:AQ+:ICnﬁu+:,:€+:|:&=
ny(y +1) - (y+n—1) ’

Fla,Bmi2) =1+
n=1

Herev. AeCand v £0.-1.-2.....
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(f) Find the radius of convergence of the Bessel function of order 7:
EEAYE o I M A
iz ﬁmv ‘.Muuaica+l_ va ’
where r is a positive integer.

17. Show that if {an}5%, is a sequence of non-zero complex numbers such that

tim 13t2) — 7,

n—toa _D:_

then
lim |an|"" = L.

n—oo

In particular, this exercise shows that when applicable, the ratio test can be used
to calculate the radius of convergence of a power series.

18. Let f be a power series centered at the origin. Prove that f has a power series
expansion around any point in its disc of convergence.

[Hint; Write z = zo + (z — z0) and use the binomial expansion for F |

19. Prove the following:
(a) The power series 3 nz" does not converge on any point of the unit circle.
(b) The power series 3 2" /n? converges at every point of the unit circle.

(¢} The power series 3 2" /n converges at every point of the unit circle except
z=1. [Hint: Sum by parts.]

20. Expand (1 —z)™™ in powers of z. Here m is a fixed positive integer. Also,
show that if

1-2)y"= W anz",

ns=i
then one obtains the following asymptotic relation for the coefficients:

1 m—1

\(33 as n — o0,

an

21. Show that for |z| < 1, one has

S 2 — 22 o= %
T—22 " 124 - 1
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and

i + M.NN + +ﬁ+y..l ¥
l+z  1+2° 1+ 22 =

Justify any change in the order of summation.

[Hint: Use the dyadic expansion of an integer and the fact that 2¥%! —1 =1+
24274 4 2%

22. Let N={1,2,3,...} denote the set of positive integers. A subset S C N is
said to be in arithmetic progression if

S={a,a+da+2da+3d,...}

where a,d € M. Here d is called the step of 5.

Show that M cannot be partitioned into a finite number of subsets that are in
arithmetic progression with distinct steps (except for the trivial case a = d = 1).
[Hint: Write 3~ _ 2™ as a sum of terms of the type HM|.“..‘

23. Consider the function f defined on B by

0 ifz<o,
h&u.ﬂ wlw»mev:

Prove that f is indefinitely differentiable on I, and that f™ (0) =0 foralln > 1.
Conclude that f does not have a converging power series expansion Y- anz™

for  near the origin.

24, Let «y be a smooth curve in C parametrized by z(t) : [a,b] — C. Let v~ denote
the curve with the same image as v but with the reverse orientation. Prove that
for any continuous function f on -

.\a...iim&” I.hu f(z)d=.

25. The next three caleulations provide some insight into Canchy’s theorem, which
we treat in the next chapter.

(a) Ewaluate the integrals

[#a
4

for all integers n. Here -y is any circle centered at the origin with the positive
(counterclockwise) orientation.

(b) Same question as before, but with v any circle not containing the origin.
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{c) Show that if |a} < < |b], then

L e TR
.\hﬂszTs e

where 4 denotes the circle centered at the origin, of radius r, with the
positive orientation.

26. Suppose f is continuous in a region (2. Prove that any two primitives of f (if
they exist) differ by a constant.



