Name!

section:

1. (20 points) Let $\overrightarrow{P} = (1, 0, -1)$, $\overrightarrow{Q} = (1, 1, 1)$ and $\overrightarrow{R} = (1, -2, 1)$. Let $f(x, y, z) = xy^4z^9$, g(x, y, z) = x - y + z and $h(u, v) = u^2 - v^2$.

- 1. Find the cosine of the angle between \overrightarrow{P} and \overrightarrow{P} , and find the equation of the plane containing \overrightarrow{P} , \overrightarrow{Q} and \overrightarrow{R} .
- 2. Compute the following quantities if possible; if not possible, state why not:

$$\diamond$$
 (i) $(\overrightarrow{P} \times \overrightarrow{Q}) \times (\overrightarrow{P} \cdot \overrightarrow{R})$;

$$\diamond$$
 (ii) $(\nabla f)(\overrightarrow{P}) \cdot \overrightarrow{Q}$.

$$\diamond$$
 (iii) $f(g(1,2,3),g(2,3,1),g(3,1,2)).$

$$\diamond$$
 (iv) $f(\overrightarrow{P}, \overrightarrow{Q}, \overrightarrow{R})$.

- 3. You are at the point \overrightarrow{P} . In what direction should you move to see g(x, y, z) increase the fastest?
- 4. Let A(u,v) = f(h(u,u), h(u,v), h(v,v)). Using the Chain Rule, compute $\frac{\partial A}{\partial u}$ at the point (1,1,1). You may check your answer by computing $\frac{\partial A}{\partial u}$ directly, but if you do not do the chain rule you will receive 0 points.
- 5. Let f(x,y) = 3x + y and $g(x,y) = x^2 + y^2$. Find the maximum and minimum values of f(x,y) given that g(x,y) = 1.