SOLUTION KEYS FOR MATH 105 HW (SPRING 2013)

STEVEN J. MILLER

1. HW #1: DUE MONDAY, FEBRUARY 4, 2013
1.1. Problems.

Problem 1: What is wrong with the following argument (from MathematiEallacies, Flaws, and Flimflam - by Edward Barbeau):
There is no point on the parabdléy = 22 closest to(0, 5). This is because the distance-squared from (0,5) to a peiny on the
parabolais:? + (y —5)2. As 16y = 22, the distance-squared f$y) = 16y + (y —5)?. Asdf /dy = 2y + 6, there is only one critical
point, aty = —3; however, there is no such tha{z, —3) is on the parabola. Thus there is no shortest distance!

Problem 2: Compute the derivative abs(sin(3z? + 2z Inx)). Note that if you can do this derivative correctly, your kredge of
derivatives should be fine for the course.

Problem 3: Let f(z) = 2% 4+ 8x + 16 andg(x) = 22 + 22 — 8. Compute the limits as goes to 0, 3 and 8 of (z) + g(z), f(z)g(x)
andf(z)/g(x).

1.2. Solutions.

Problem 1: What is wrong with the following argument (from MathematiEallacies, Flaws, and Flimflam - by Edward Barbeau):
There is no point on the parabaléy = 22 closest to(0, 5). This is because the distance-squared from (0,5) to a feiny on the
parabolais:? + (y —5)2. As 16y = 22, the distance-squared f$y) = 16y + (y —5)?. Asdf /dy = 2y + 6, there is only one critical
point, aty = —3; however, there is no such tha{z, —3) is on the parabola. Thus there is no shortest distance!

Solution: The error in the argument is that, to find maxima and minimas, fitot enough to just check the critical points; you must
also check the boundary points. The boundary points herg aré® andy = oo (0k, justy = 0). We thus see that = 0 gives the
closest point, whiley — oo gives ever increasing distances, indicating that there imaximum.

Problem 2: Compute the derivative abs(sin(322 + 2xInx)). Note that if you can do this derivative correctly, your kiedge of
derivatives should be fine for the course.

Solution: We use the chain rule multiple times. Remember that the alires of f(g(x)) is f'(g(x)) * ¢’(x).The derivative of
cos(sin(32? + 2z Inx)) is two chain rules (with a sum rule and a product rule inside):

d
—sin(sin(3z? + 2zlnz)) * . [sin(32” + 2z 1nz)]
x

which is

d
—sin(sin(3z% + 2z Inx)) * cos(3z% + 2zlnx) * . (32 +2zInz],
x

which is just

—sin(sin(32? + 2xInz)) * cos(3z? +2xInz) * (62 +2Inx + 2).
Problem 3: Let f(z) = 2% 4+ 8x + 16 andg(x) = 22 + 2z — 8. Compute the limits as goes to 0, 3 and 8 of () + g(z), f(z)g(x)
andf(z)/g(x).

Solution: We havef(0) = 16, f(3) = 49, andf(co0) = oo, while g(0) = —8, ¢(3) = 7 andg(co) = co. Using the limit of a sum
(product, quotient) is the sum (product, quotient) of tineii(so long as everything is defined), we see there is no profit O or 3.
For the first,f (z) 4 g(x) goes to 16-8 =8 asgoes to 0, 49 + 7 = 56 asgoes to 3, ando+ oo asx goes toxo (note that whileco — oo

is not definedpo + oo is and just equalso). For f(z)g(z), this tends to 16 * (-8) =-128 asgoes to 0, to 49 * 7 = 343 asgoes to 3,
andoo * 00 = 0o asx goes toco. For the quotient, it is important that we do not have 0/6@foo. Thus we can immediately do the
first two cases, and sgéx)/g(x) goes tol6/(—8) = —2 asx tends to 0 and 49/7 = 7 astends to 3. For the last, as we haxe/ oo
we need to work a bit harder. Agz) = 2? + 8z + 16 andg(z) = 22 + 22 — 8, f(z)/g(z) = (1 +8/x +16/2%)/(1 +2/z — 8 /?)
(from pulling out anxz? from the numerator and denominator). Now each piece hasladefihed and finite limit as: tends tooo,

1



2 STEVEN J. MILLER

and we see thaf(x)/g(x) tends to 1 as tends toco . Note you could also do Problem 3 by expanding out the exjomessbut that
is much harder. For exampl¢(z)g(x) is a polynomial of degree 4 that can be analyzed directlyoAlsr f(z)/g(«) one could
proceed by L'Hopital’'s rule. That said, the point of this mise was to remind you that the limit of a sum is the sum of imét$,
and so on.

2. HW #2: DUE WEDNESDAY, FEBRUARY 6, 2013
2.1. Problems:

Page823: #9:: Find [@|,| — 20, (@ — b|, @ + b and3@ — 2 for @ = (1,—2)and b = (—3,2).

Page 823: #18:: Find a unit vectoru in the same direction a8 = (5, —12). Expressu in terms of i and 7, and find a vector’
in the opposite direction as that @f.

Page 823: #38:: Given three pointsi(2, 3), B(—5,7) andC(1, —5), verify by direct computation that B + BC + CA is the zero
vector.

Page 824: #42:: Let @ = (a1, az) and? = (b1, b2). Prove by componentwise arguments thatif+ 3) =7 thenf> = ﬁ

Page833: #1:: Let @ = (2,5, —4)and b = (1, -2, -3). Find2@ + 0,37 — 40, @ - 0,|@ — 0|and@/|@|.

Page 834: 392_;|'W0 vectors are parallel provided that one is a scalar maltip the other. Determine whether the vectars=
(4,-2,6) and b = (6, —3,9) are parallel, perpendicular or neither.

Additional Problem: Find the cosine of the angle betweeh= (2,5, —4) and b = (1,-2,-3).
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2.2. HW #2: Due Wednesday, February 6, 2013: Solutions:
. — — — — —
Page 823: #9:: Find|[d|,| —2b|,|d — b|, @+ b and3@ —2b for @ = (1,—2)and b = (—3,2).

Solut|on We have|_>| = /12 + = /5. As 2 B = (6,—4), | — 20| = /67 (-2 = V/B2. Since@ — b = (4, —4),
- b|f\/42 f\/— Flnally, 4T _< 2,0) and

3@ 20 = (3,—6) — (—6,4) = (9, ~10).

Page 823: #18:: Find a unit vector/ in the same direction a8’ = (5, —12). Expressi in terms of 7 and J , and find a vector’
in the opposite direction as that @f.

Solution: We have|d| = \/52 12 = \/169 — 13. Aunitvectoris? = @ /| @], or @ = (5/13, —12/13). As 7 = (1,0)

andj = (0,1), we haved = 3 i — ] As — has the opposite direction a8, we see we may take’ = —d = (—5,12).

Of course, there are multiple answers We could also Tdke — 1/, as@ and@ are in the same direction.

Page 823: #38:: Given three pointsi(2, 3), B(—5,7) andC(1, —5), verify by direct computation that B + BC + CA is the zero
vector.

Solution: Given two pointsP = (p1,p2) and@ = (¢1, g2), byz@ we mean the vector from® to @), which is{q1 — p1, g2 — p2). We
thus have

AB = (=5,7)—(2,3) = (~7.4)
BC = (1,-5)—(=5,7) = (6,-12)
CA = (2,3)—(1,-5) = (1,8),
which implies
AB+ BC + CA = (—7,4) + (6, -12) + (1,8) = (0,0).

Why is this true? We are traveling in a directed way along ltined edges of a triangle, and we return to where we started.
Page 824: #42:: Letd = (a1, as2) and? = (b1, b2). Prove by componentwise arguments thatif+ ? =7 then?> = ﬁ

. — _— .
Solution: Assumed + b = . Substituting for these vectors yields

(a1, az) + (b1,b2) = (a1, a2),
or equivalently
(a1 4+ bi,a2 +b2) = (a1, az).
This is a pair of equations:
a1 +b1 = a1, as+by = as.
We now have simple equations of numbers and not vectors.hedirst, subtracting; from both sides gives, = 0, while for the

. . . — . .
second subtracting, from both sides gives, = 0. Thus our vectorb = (0,0). The key observation here is that we can reduce a
vector question to a system of equations about numbers, arkghow how to handle / analyze numbers.

Page833: #1:: Let @ = (2,5, ~4)and b = (1,2, —3). Find2@ + b,3d@ —4b,d - b,|d@ — b|andd/[@|.

Solution: First, .
2d + b = (4,10,—8) + (1,-2,-3) = (5,8,—11)

_>
3d —4b = (6,15, —12) — (4,—8,—12) = (2,23,0).
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Next,
DB = 2145 (—2)+(-4)-(=3) = 2-10+12 = 4.
As7—7=<1,7,—1>,
T = JIET T (C12 = VAL
Finally,as|7|:\/m:\/_,wesee /| d| = (2/V/45,5//45, —4/\/45).

Page 834: 39: Two vectors are parallel provided that one is a scalar maltip the other. Determine whether the vectars=
(4,-2,6) and b = (6, —3,9) are parallel, perpendicular or neither.

Solution: We have N

T-b = 4-6+(—2)-(—3)+6-9 = 244+6+54 = 84.
If the two vectors were perpendicular, the dot product sthoel zero. As it isn’t zero, we know the vectors are not permeral. We
now check to see if they are parallel; that means the cositieeaingle should be 1 or -1. To compute this, we need the Ismdthe
two vectors. We have

|d) = /22 + (22462 = VI6+4+36 = V56
and

5] = 62+ (—3)7+92 = V3619181 = VI26.
Thus ifd is the angle between the two vectors,

COS@*E)'?* 4 *%*1
@[T VEeVIZ6 s

so the two vectors are indeed parallel.
i, . . —
Additional Problem: Find the cosine of the angle betweeh= (2,5, —4) and b = (1, -2, —3).

Solution: If 0 denotes the angle, then
o =

a-b
Ijl 0] R
We worked with these two vectors in Problem 1, and s@w b = 4 and|d| = v/45. A similar calculation givesg b | =
V12 + (=2)2 + (=3)2 = V/14. Thus
4
cost) = ——.
V4514

3. HW #3: DUE FRIDAY, FEBRUARY 8, 2013
3.1. Problems:

Section 11.2: Question 1: The corollary on page 830 states two vectors are perperdididnd only if their dot product is zero.
Find a non-zero vector, say, that is perpendicular tol, 1,1). Extra credit: find another vector perpendiculagtol, 1) and the
vector ¢ that you just found.

Question 2: Consider a triangle with sides of length 4, 5 and 6. Which tidessurround the largest angle, and what is the cosine of
that angle?

Section 11.3: Question 3: Find the determinant of thizx 2 matrix( s ); in other words, we filled in the entries with the numbers

o

1, 2,3 and 4 in that order, row by row. Similarly, find the detarant of the3 x 3 matrix s 5 5 ); in other words, we fill in the

numbers by 1, 2, 3, 4, 5, 6, 7, 8, 9.(Extra credit: find a nicenfda for the determinant of the x n matrix where the entries are 1,
2, ...,n? filled as above, and prove your claim.)
Question 4: Find the area of the parallelogram with vertices (0,0),X446), (3,10).
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3.2. HW #3: Due Friday, February 8, 2013: Solutions:

Section 11.2: Question 1: The corollary on page 830 states two vectors are perpemditfidnd only if their dot product is zero. Find a non-zero
vector, say?, that is perpendicular t6l, 1, 1). Extra credit: find another vector perpendiculaf1ol, 1) and the vector that you just found.

Solution: Let's say @ = (x,y, z). Thend - (1,1,1) = 0 means
z-1+y-142-1 = 0.
If we takez = —(z + y), we see the dot product is zero. There are thus many possikuch asl = (1,1, —2). Another possibility is to take
z = 0 and theny = —z, giving us(1, —1, 0). Notice the solution space is two-dimensional; we’'ll sgerl#’s a plane. There are three dimensions

initially; we lose one in the directiofll, 1, 1) and thus two dimensions remain.
Let's say now we want to find a vecta#l = (z,y, z) perpendicular td1, 1, 1) and(1, —1, 0). We then have

z-14y-142-1 =0 and z-14+y-(-1)+2-0 = 0.

The first gives ust + y + z = 0, while the second gives us— y = 0 or z = y. Substituting this into the first givesr + z = 0 soz = —2uz.
Takingz = 1 we seey = 1 andz = —2, for the vector(1, 1, —2) is perpendicular to botf, 1, 1) and(1, —1, 0).

Question 2: Consider a triangle with sides of length 4, 5 and 6. Which tidessurround the largest angle, and what is the cosine batiuhe?

Solution: Let 6;; denote the angle between the sides of lerigtind j. By the law of cosines, it = a® + b* — 2ab cos O, thencos 0, =
(a* + b* — ¢*)/2ab, so the cosines are
g L BT 12 @h@os 9 P 312
? 2-4-5 8 16 2-4-6 16 ? 2:5-6 4 16
Note all the angles are between 0 and 90 degrees (i.e., dsaage acute). The larger the angle, the smaller the cofhmes the largest angle has
thesmallestcosine, so the largest angle is the one between the sidesgthlé and 5.

Section 11.3: Question 3: Find the determinant of th& x 2 matrix( s j ); in other words, we filled in the entries with the numbers 1,

2, 3 and 4 in that order, row by row. Similarly, find the detemanit of the3 x 3 matrix }; 5 5 ;in other words, we fill in the

numbers by 1, 2, 3, 4, 5, 6, 7, 8, 9.(Extra credit: find a nicenfda for the determinant of the x n matrix where the entries are 1,
2, ...,n? filled as above, and prove your claim.)

Solution: For the2 x 2 matrix, the determinantis just- 4 — 2 - 3 = —2. For the3 x 3 matrix, we write the first two columns again
and find the determinant is

1-5-94+2-6-7+3-4-8-7-5-3—-8:-6-1-9-4-2 = 0.
A little inspection illustrates why this is zero. Note thatde the second row is the sum of the first and third row. Thastihee vectors
do notreally form a 3-dimensional parallelpiped, but rather m&-dimensional parallelogram, and the volume of a 2-difoeias
parallelogram in 3-dimensional space is just zero. Sifyiline determinant for the x n matrix is zero ifn > 3 as twice the second
row is always the first row plus the third.

Building on this observation, we can show the determinamhef. x n matrix with entries from 1 tm? is zero forn > 3, even
though we don'’t have a formula to compute these determirfants > 4! The reason is we have the geometric definition of the
determinant, namely that it gives thedimensional volume of the region spanned by the rows. Mdtiat whem > 3, the sum of
the first and third rows equals twice the sum of the second Tidws these three vectors all lie in a plane, and we have ldshst
one dimension. This implies thedimensional volume is zero.

Question 4: Find the area of the parallelogram with vertices (0,0),X446), (3,10).
Solution: The parallelogram is generated by the veciors= (2,4) and@ = (1,6); we find these by looking a2, 4) — (0, 0) and
(1,6) — (0, 0); note that(3,10) = (2,4) + (1,6). We know the area is equal to the determinant of the matril firist row v and

second rowws. Thus we need the determinant of the ma(rig g ),which is2-6 —1-4 = &. Note that if we wrote the vectors in

the other order we would have the matrx = ( y S ),WhiCh has determinarit- 4 — 6 - 2 = —8. What went wrong? We have to

remember it is the absolute value of the determinant thaeistea.
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4. HW #4: DUE MONDAY, FEBRUARY 11, 2013
4.1. HW #4: Due Monday, February 11, 2013: Problems:

Page842: #1: Find @ x b with @ = (5,—1,-2)and b = (—3,2,4)

Page842: #5: Find the cross product of thé = (2, —3) and b = (4,5) by extending them to 3-dimensional vectars= (2, —3,0)

and b = (4,5,0).
7><?>)With(ﬁ>><€> 7

Page 842: #11: Prove that the vector product is not associative by compatin ( ) % 7 inthe caséd =

— —
b=7+j,andd =17+ ] +K.

Page 842: #12: Find nonzero vectors’, b and @ suchthafd x b = @ x @, but b # ¢.

Section 11.4: Question 1: Write parametric equations of the straight line that pats@sigh the poinf and is parallel to the vector
7/, with P the point (0,0,0) an@' the vectoii + 2j + 3k (1,2, 3).

Section 11.4: Question 2: Write parametric equations of the straight line that patiseasigh the poinf? and is parallel to the vector
7, with P equal to (3,-4,5) and/= -2 + 7j + 3k = (—2,7,3).

Section 11.4: Question 3: Write parametric equations of the straight line that patiseasigh the poinf® and is parallel to the vector
', with P equal to (4,13,-3) and’= 2i - 3k = (2,0, —3).

Section 11.4: Question 22: Write an equation of the plane with normal vecfar = (—2,7,3) that passes through the point
P =(3,-4,5).
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4.2. HW #4: Due Monday, February 11, 2013: Solutions:
. - —
Page 842: #1: Find @ x b with @ = (5,—1,—2)and b = (—3,2,4)

Solution: We haved x 7 = (agbs — asba, asby — a1bs, a1ba — azby), which in this case is
<(_1) 4 - (_2) -2, (_2) : (_3) =5 47 5-2— (_1) : (_3)> = <Oa _14-1 7>
We could also do the determinant approach, and write thehificsstolumns again:
- = > =
i 7 k|1
5 -1 2|5 -1
3 2 4]|-3 2
and then do the three diagonals (from upper left to bottoimtyigith positive signs, and then the three diagonals (frattdm left to
upper right) with negative signs.

Page_>842: #5: Find the cross product of theé = (2, —3) and b = (4,5) by extending them to 3-dimensional vectars= (2, —3,0)
and b = (4,5,0).

: . — o .
Solution: Again we haved x b = (agbs — asba, azby — a1bs, a1bs — aszby), which in this case is
((=3)-0-0-5,0-4—2-0,2-5—(=3)-4) = (0,0,22).
This is a very powerful technique, and allows us to use thesgpooduct, initially defined only in three dimensions, i ivimensions.
— . — :
b x @) with (@ x b)x @ inthe caséd = 7

Page 842: #11: Prove that the vector product is not associative by compatin (
- = = N
b=14+j,andd =i+ j + k.
. " - . .
Solution: Rewriting@, b, and@ in terms of their components we have
@ = (1,0,0), b =110, @=(11)
Using the definition of the cross product, we find thatx @ = (1,—1,0) and thereforéd x (

Similarly, we see that’ x b = (0,0,1), which gives(@ x ) x @ = (—1,1,0). Since(—
cross product is not associative.

T x @) = (0,0, -1).
1,1,0) # (0,0, —1), we see that the

Page 842: #12: Find nonzero vectors’, b and @ suchthafd x b = @ x @, but b # <.

Solution: Here’s one solution. Let’s start with a specifi¢ and see what happens. The simple@sto take would bed = (1,0,0)
(we can'’t take the zero vector, so let's have two componegits)z This is a great way to build intuition. Then for any \@ct

A 3 : —
b = (by,b,bs), we haved x b = (0, —bs, bo). Notice that?i) b does not depend on! Therefore leth = (1,1,1) and
@ =(2011,1,1). We see thal/ x b = (0,—1,1)="d x ¢,butb # .

For another solution, recall that x @ = 0. Thus, if @ is anyvector, we always have

- —
T x b :7><(b m),

—— — . . .
so we can také&Z and b arbitrary, ani sel = b +d. (Oka_y>, we can't take the zero vector far).) An interesting question
becomes: givefi, describe all vectorsh and @ such thatd’ x b = @ x ¢. If you want, you may do this for extra credit.

Section 11.4: Question 1: Write parametric equations of the straight line that patiseasigh the poinf® and is parallel to the vector
', with P the point (0,0,0) and' the vectoii + 2j + 3k = (1,2, 3).

Solution: The equation igz, vy, z) = P + t¥ with ¢ ranging over all real numbers. Substituting #8rand @ yields (z, y, z) =
(0,0,0) +t(1,2,3), so(x,y, z) = (t,2t, 3t), or equivalentlyz= ¢, y= 2t andz = 3t.
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Section 11.4: Question 2: Write parametric equations of the straight line that pats@sigh the poin and is parallel to the vector
7, with P equal to (3,-4,5) and’= -2i + 7j + 3k = (-2, 7,2.

Solution: Again the equation of the line is:, y, z) = P + t /. Substituting forP and @’ yields (z,y, z) = (3, —4,5) + t(—2,7,3).
Thus(z,y, z) = (3 — 2t, —4 + Tt,5 + 37), or expanding:= 3-2, y= -4+7t andz= 5+3.

Section 11.4: Question 3: Write parametric equations of the straight line that patsesigh the poin and is parallel to the vector
7, with P equal to (4,13,-3) and/= 2i - 3k = (2,0, —3).

Solution: Again the equation of the line is:, y, z) = P + t /. Substituting for? and ¥/ yields (x, y, z) = (4,13, —3) + (2,0, 3).
Thus(z,y, z) = (3 — 2t,13, =3 + 3t), orz= 3-2, y= 13 andz= -3+3.

Section 11.4: Question 22: Write an equation of the plane with normal vecfar = (—2,7,3) that passes through the point
P =(3,-4,5).

Solution: The equation of the plane i&z,y, z) — B) - 7 = 0, or (x,y,2) - @ = P - 7. Substituting givesz, y, z) - (—2,7,3) =
(3,-4,5) - (=2,7,3). Thus—2z + Ty + 3z = 3(=2) + (—4)7 + 5(3) = —19, s0—2z + Ty + 3z = 19.

5. HW #5: DUE WEDNESDAY, FEBRUARY 13, 2013
5.1. Problems:
Section 11.8: Question 1. Find the rectangular coordinates of the point with the giwgimdrical coordinates. (%, 2).
Section 11.8: Question 26: Describe the graph of the given equatign:= 5.
Page 908: #2:: Find the largest possible domain fftz, y) = /22 + 2y2.
Page 908: #4.: Find the largest possible domain fftz, y) = 1/(z — y).
Page 908: #5:: Find the largest possible domain oz, y) = (y — 22)'/5.
Page 908: # 27:: Describe the graph of(z, y) = /4 — 22 — y/2.

Page 908: #32:: Sketch level sets of (z,y) = % — y°.
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FIGURE 1. Contour Plot for Problem #32 on page 908.

5.2. Solutions:

Section 11.8: Question 1. Find the rectangular coordinates of the point with the giwgimdrical coordinates. (%;, 2)
Solution: In cylindrical coordinatesy=r cos ¢, y=r sin# andz= z. We know that-= 1 andd = 5 because cylindrical coordinates
are written as, 0, z). Thusr = 1cos § = 0,y = 1sin § = 1, andz = 2, and the rectangular coordinates are (0,1,2).

Section 11.8: Question 26: Describe the graph of the given equatign:= 5.

Solution: The graph of the equation of the fors ¢ (¢ being a constant) can be described as sphere of radistered at the origin,
thus the graph is a sphere with a radius 5 centered at theotigspherical coordinates we have= psin ¢ cosf, y = psin ¢ sin 6
andz = pcos ¢. Using the Pythagorean Theorem twice, we seetRat y2 + 22 = p? in spherical coordinates. Thusgif= 5,
which is the same g8 = 25 (sincep > 0), in Cartesian coordinates this becomést y? + 22 = 25, which is the equation for the
surface of a sphere of radius 5.

Page 908: #2:: Find the largest possible domain ftx, y) = /22 + 2y2.
Solution: The function is defined for all values ofandy (thus the domain is all dR2). The reason is that the only danger with the
square-root function are negative numbers, ahd- 2y is always non-negative.

Page 908: #4:: Find the largest possible domain fftx, y) = 1/(z — y).
Solution: The only danger with the reciprocal function is when the deimator is zero. Thus, so long as# y the function is
defined. We can write this in set notation as the doma{itisy) € R? : z # y}.

Page 908: #5:: Find the largest possible domain ffz, y) = (y — 22)'/5.
Solution: Note the cube-root of a negative number is a negative nuritgecube-root of zero is zero, and the cube-root of a positive
number is a positive number. In other words, the cube-ratefimed for all real numbers. Thus the domain of this fundsail of R2.

Page 908: # 27:: Describe the graph of(z,y) = /4 — 22 — y2.

Solution: Note that the height only depends oh-+ y2; in other words, any two pairs, y;) and(zz, y2) that are the same distance
from the origin(0, 0) give the same value to our function. There is thus enormogslansymmetry, and we see that there will be
lots of circles in our plot. If we look at level sets, we wantsive /4 — 22 —y2 = cord — 22 —y? = 2 ora? + y> = 4 — 2.
Remembering thay/- - - means take the positive square-root, we see that the adtaisalues of: are0 < ¢ < 2. For each of these
we get a circle of radius/42 — ¢2 as the level set. The smallest is wher= 2, which is over the origin; the largest circle is when
¢ = 0 and then we get a circle of radius 2 in thg-plane. Another way of looking at this problem is to write= f(z,y). If we do

this we getz2 = 4 — 22 — 2 or 22 + % + 22 = 4. Remembering that > 0 (due to the square-root), we see this is just the upper
hemisphere of a sphere of radius 2.

Page 908: #32:: Sketch level sets of (z,y) = % — y°.
Solution: If we havez? — y2 = ¢, notec can be anything. We get a series of hyperbolas.
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6. HW #6: DUE MONDAY, FEBRUARY 18, 2013
6.1. Problems. HW #6: Due Monday, February 18, 2013.

Page 917: #1:: Findlim, ) (0,0)(7 — 22 + 5xy).

Page 917: #8:: Findlim ., (o, 1) In (5552 ).

Page 917: #10:: Findlim, ), (0,0) 1(174?

Page 918: #24:: Find the limit or show that it does not existm,. ,, .y (1,—1,1 ysz;;””y

Page 918: #38:: Evaluate the limilim,, ., (0,0 2+y by making the polar coordinates substitution.
Page 919: #54:: Discuss the continuity of the functiof(x, y) that is“gﬂ if zy # 0and 1ifxy = 0.
Page 928: #1:: Compute the first-order partial derivativesfifr, y) = z* — 23y + 22y — 2y + y*.
Page 928: #4.: Compute the first-order partial derivativesfifr, y) = e2e*v.

Page 928: #5:: Compute the first-order partial derivativesfifz, y) = %g

e No class on Friday February 15 (Winter Carnival).

e No TA review session in Clark on Thursday night, but MSRC st e
open.

e Class on Monday is optional review (but yowstbring in the home-
work).

e Exam is in class on Wednesday February 20. Closed book. Make s
you write neatly and in the exam packet. Clearly mark youmaans
(circling or boxing is good).
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6.2. Solutions: HW #6: Due Monday, February 18, 2013.

Page917: #1:: Findlim(zyy)ﬁ(o_’o)('? -2+ S5xy).
Solution: The limit laws tell us that the limit of a sum is the sum of thmilis, and similarly for the difference or a product. We thus
have
lim (7 —2%+5zy) = lim 7— lim 2*+ lim 5 lim 2 lim y
(2,9)—(0,0) (2,y)—(0,0) (2,y)—(0,0) (2,9)=(0,0)  (z,9)—(0,0)  (2,y)—(0,0)
7—-0°+5-0-0 = 7.
Page 917: #8:: Findlim ,_ (2.1 In (%)
Solution: As (z,y) — (2, —1) the denominator goes &(—1)? — 2 = 1 and the numerator goes to+ 2 + 2(—1) = 1. Thus we

are taking the natural logarithm of a quantity getting ctas®d closer ta.. Asln1 = 0, the limit is zero. We could also attack this
problem by notindn(a/b) = Ina — In b and then using the difference rule.

Page 917: #10:: Findlim(, ), (0,0) 2t

Solution: As the limit of the denominator is 1, we can use the limit of atignt is the quotient of the limits. What is the limit of the
numerator? We're evaluating cosine at values closer arsgcto 0. As cosine is continuous, this equals0O which is 1. Thus our
limitis 1/1 or 1.

Page 918: #24:: Find the limit or show that it does not existm,. ,, .y (1,—1,1 %;;fy

one T yztwztay
Solution: lim g,y ) 1,-1,1) 7y

The limit does not exist. Az, y, z) approaches (1,-1,1), the numerator approa¢hds - 1 +1-1+1-(=1) = —1, while the
denominator approachést+ 1 - (—1) - 1 = 0. Thus our quantity looks like-1/0 in the limit, which is undefined.

Page 918: #38:: Evaluate the limitim,. ), 0,0) I2+ - by making the polar coordinates substitution.

Solution: Using the textbook’s advice to convert from cartesian coai@s to polar coordinates (= rcosf, y = rsinf), the
problem becomes significantly easier to manage. Note(that) — (0,0) becomesr — 0 and@ is free. The limit equals
lim, g M By factoring out the-? from both the numerator and denominator, and using theitgiteit? 6 +sin® 6 = 1,

72 cos2 0+r2sin2 0

the limit equaldim,._,¢

M Here we can see the limit approaches 0, becauss 0 = sin® 4| < 2 andr — 0.

Page 919: #54.: Discuss the continuity of the functiof(z, y) that issg‘ﬁ% if zy # 0and 1ifzy = 0.

Solution: This function is continuous. By the definition of continuigyfunctionf is continuous ata, b) if it is defined at(a, b) and
the limit is equal to the value there. The only troublesomiatscare wher: = 0, b = 0 or botha andb equal 0. Assume first that
our pointis(a, 0) with a # 0. Then(x, y) — (a,0) means that eventuallyis non-zero and close tg andy may or may not be zero
butis close to 0. We havg(a,0) = 1. If y = 0thenf(x,y) = 1. If y # 0 andz is close toe and non-zero ang is close to 0, then
we must showf (z, y) is close to 1. We havé(z, y) = % with zy # 0 and small; however, sindan; Si;‘t =1, we see that as

(z,y) — (a,0) whenevery # 0 we havery — 0 and thus, setting = zy, we'll have% arbitrarily close to 1. The analysis for
points(0, b) with b # 0, as well as the poin®, 0), is similar.

Page 928: #1.: Compute the first-order partial derivativesfifr, y) = z* — 23y + 22y — 2y + y*.

Solution: To find the partial derivative with respect tg we considery constant and apply the standard rules of differentia-
tion, and find% = 423 — 322y + 22y — y>. To find the partial derivative with respect to we consider: constant and find
g—g’; = —3 + 222y — 3zy? + 497

Page 928: #4:: Compute the first-order partial derivativesfifr, y) = e?e®?.

Solution: Note thate? is just a constant; there is no need to use the product rulst-uge the constant rule. We ha%e = yeZe™
andg—{; = ze?e®V,

Page 928: #5:: Compute the first-order partial derivativesfafr, y) = 4y

z—y’

Solution: Applying the quotient rule of differentiation gived = (w)_;)(fﬂ) = ok and 2. (””J(rj)z)lz(m v - =
Another way to do this problem is to observe the following:
+ - 2 - 2 2
vy _woy+y  roy o o,
r—y r—y r—y Ty r—y

This is a little nicer than using the quotient rule; if we waémé derivative with respect te note we just need to use the reciprocal
rule, and find3. = 2y - (—1)(z — y)~2, as before.
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7. HW #7: DUE MONDAY, FEBRUARY 25, 2013
7.1. Problems. HW #7: Due Monday, February 25, 2013.

Page 928: #22:: Showz,, = z,, With z(z,y) = 2 — 4ay + 3y>.

Page 928: #25:: Showz,, = z,, With z(z,y) = In(z + y).

Page 928: #33:: Find the tangent plane to= sin 75¥ at the point(3, 5, —1).
Page 928: #36:: Find the tangent plane to= 3x + 4y at the point(1, 1, 7).

Page 928: #63:: The ideal gas law says = nRT. Showg—{}g—;‘g—g =—1.
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7.2. Solutions: HW #7: Due Monday, February 25, 2013.

Page 928: #22:: Showz,, = z,, With z(z,y) = 2% — 4xy + 3y
Solution: We havez, = 2z — 4y and thernz,,, = —4, while z, = —4z + 6y and there,, = —4 = z,,,.

Page 928: #25:: Showz,, = z,, With z(z,y) = In(z + y).

Solution: First, remember thdi(z + y) # Inx + lny; itis In(zy) that equals this. We have, = ﬁ = (z +y)~! and thus
Zay = —(x +y) 2. Similarly, z,, = ﬁ =(x+y)tandzy, = —(z+y) "% = 24y

Page 928: #33:: Find the tangent plane to= sin 5 at the point(3, 5, —1).

Solution: First, we check that this point is on the surface it as-ds= sin 13” Thuszy = 3, yo = b andzy = f(zo,y0) = —1,

%o = = 0. Similarly 2 31‘ = T2 cos T2, 50 9L f Vs = 0. The tangent plane
3,5 ,5

\ o
8y (3,5)

with f(z,y) = sin 752, We have— = T cos Y

is
Z—f35 (y—5):_1

(since the two partial derivatives vanish at the pomt oénast).
Page 928: #36:: Find the tangent plane to= 3z + 4y at the poin(1, 1, 7).

Solution: Note this is the equation of a plane, so we expect this to bartkeer (this problem is thus a good check of the reasonable-
ness of our definition of the tangent plane). First, we do nlesthat7 = 3 -1+ 4 - 1. Letting f(z,y) = 3z + 4y, we havery = 1,

_ _ of _ _ of _ of _ i
Yo =1,20 = f(xo,90) =7, 55 = 305" T 3,and oy = 4s0 5|0y = 4. The tangent plane is
of of
= 1,1)— -1 — —1) =74+3xz—-1 4(y—1) = 3 4y.
FL )5~ (1’1)@ )+6y (1,1)@ ) +3(z—-1)+4(y—1) z + 4y
Page 928: #63:: The ideal gas law says” = nRT. Show#% 32 9L = —1.

Solution: We may writep = nRT/V,V = nRT/p andT = pV/nR. Direct computation giveg% —nRT/V?, 2
and4l = V/nR. Thus

' aT =nR/p

Op OV oT  nRT nR 'V _nRT

ovarop V2 p nR  Vp ’
where the last equality follows fropl/ = nRT. This should be a bit surprising: if we just cancel the défgials we would expect
to end up withZ2, which should be 1.

8. HOMEWORK #8: DUE WEDNESDAY, FEBRUARY 27:

Skim my notes on the Method of Least Squares (link on the eduwwsepage, or go to
http://ww. w | i ans. edu/ Mat hemati cs/sym 1T er/public_htn/105/ handout s/ Met hodLeast Squar es. pdf)
and Section 12.6.

8.1. Problems: HW #8: Due Wednesday, February 27:

Page 940: #5: Find every point on the surfagdx, y) = 22 + y* — 6x + 2y + 5 at which the tangent plane is horizontal.

Page 940: #11: Find every point on the surfagdz, y) = (222 + 3y?) exp(—2? — y?) at which the tangent plane is horizontal.
Page 940: #29: Find the first octant point on the surfat®r + 4y + 3z = 169 closest to the poinf0, 0, 0).

Page 941: #61a.. Suppose Alpha Inc and Beta Ltd have profit functions given by
P(z,y) = —22% + 12z + 2y —y — 10
Q(z,y) = =3y + 18y + 2xy — 2 — 15,

wherez is the price of Alpha Inc’'s good anglis the price of Beta Ltd’s good. Supposing that the managefdpta Inc and Beta
Ltd know calculus and know that the other manager knows t#as well, what price will the two companies set to maxintiesr
profits?


http://www.williams.edu/Mathematics/sjmiller/public_html/105/handouts/MethodLeastSquares.pdf
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Page 941: #61b.: Now suppose that Alpha Inc and Beta Ltd set their prices so asaimize their combined profit. Now what will
the optimak: andy be?
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8.2. Solutions: HW #8: Due Wednesday, February 27:

Page 940: #5: Find every point on the surfagdx, y) = 22 + y* — 6x + 2y + 5 at which the tangent plane is horizontal.
Solution: Remember that the equation for the plane tangent to thecgurfa f(z,y) at the pointa, b) is given by

2= f(a,b) = fala,b)(x — a) + fy(a,0)(y - b),

with f, = % andf, = 3—5- Therefore, if we want the tangent plane to be horizontalneed to find all point$z, y) such that both
partial derivatives vanish at that point, ff(z,y) = f,(x,y) = 0. We have

of of
— =2z — — =2 2.
B z — 6, By Y+
We seef,(z,y) = 0 whenz = 3 and f,(z,y) = 0 wheny = —1 (this is the example done in class), so the only point at wtheh

tangent plane is horizontal {8, —1).

Page 940: #11: Find every point on the surfagdz, y) = (222 + 3y?) exp(—2? — y?) at which the tangent plane is horizontal.
Solution: The equation for the plane tangent to the surfce y) at the point(a, b) is given by

2= f(a,b) = fala,b)(x — a) + fy(a,0)(y = b).

Therefore, if we want the tangent plane to be horizontal, eedrto find all point$z, y) such thatf,(z,y) = f,(z,y) = 0. Taking
the partial off with respect tar, we have
g— = (22% + 32/2)671277!2(—250) tdge ™V = 21767127'7!2(2 — 227 — 3y?).
X
Sincee—"~v* # 0 for all pairs of real numbergr, i), we see thaf, (z,y) = 0 whenz = 0 or 2 — 222 — 3y? = 0. Similarly taking
the partial derivative of with respect tay gives
0
6_f = (2:102 + 3y2)e_””2_y2 (—2y) + 63/6_””2_y2 = 2ye_:”2_y2 (3-— 222 — 3y7).
Y

Thereforef, (z,y) = 0 wheny = 0 or when3 — 2z2% — 3y? = 0.

We now need to find the points where bgthandf, are 0. Since we knov,(z,y) = 0 whenever: = 0, let’s first letz = 0. For
f, to be 0 given that = 0, we needy(3 — 3y?) = 0, soy = 0 ory = +1. Therefore the tangent plane is horizontal at the three
points(0,0,0), (0,1,3/e) and(0, —1, 3/e) (the z-component is found by evaluatirfgat thex andy values).

We also know thaff, (z,y) = 0 whenevery = 0, so now let’s lety = 0. For f,, to be 0, we needz(2 — 22?) = 0, soz = 0 or
x = +1. Therefore the tangent plane is also horizontal at the péin®, 0), (1,0,2/e) and(—1,0,2e71).

Finally, we need to make sure there aren't any other solstie@re missing. Notice that we've found every possible sofu
wherez or y is 0. Thus any other solution we could find would havandy not equal to 0. In this case, fgfi, to be 0 we need
3 — 222 — 3y% = 0. Similarly, for f, to be 0 we need — 222 — 3y? = 0. However, it is impossible for both of these equations
to be satisfied at the same time. Subtracting the two equeatverfindl = 0, which is a clear contradiction. Therefore there are no
additional solutions with both andy not equal to 0.

Page 940: #29: Find the first octant point on the surfat®r + 4y + 3z = 169 closest to the poinf0, 0, 0).
Solution: We want to express the distance from a point on the surfadeetorigin as a function af andy. Once we've done that,
we can use our optimization techniques to find the paig/) which minimizes this distance. Notice that we can rewriteehuation
of the plane as
z= @ —4dzr — éy
3 3

Therefore any point on the plane can be writter{:ag/, 169/3 — 4x — 4y/3). The distance squared from this point to the origin is
given by
1 4 \?
h(z,y) = 2* +y* + <% — 4z — §y> .

Notice that the poin{z, y) which minimizes the distance from the origin to the plan® algnimizes the distance squared from the
origin to the plane. Therefore we can just minimige:, y) to find our optimal point, instead of having to deal with thetyssquare
roots that come into play with actual distance. To minimize, y), we take the partial derivatives with respectitandy, and set

them equal to 0. We have
Ooh 169 4 Oh 8 (/169 4
— =2 -8 — —dx— = —=2y— = — —dz— -y .
oz " 8(3 * 3y>’ ay Y 3<3 * 3y>
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So we want to solve the system of equations

169 4
2 — 8 — —dz — -

Multiplying the second equation by 3 and we get

9 4
2— _— — =
T 8<3 3y)
4
3 .

Subtracting the second equation from the first gives- 6y = 0, sox = 3y. Substitutingr = 3y into the first equation gives

169
6y — 8 <— — 12y — —1/) =0,

which simplifies toy = 4. Thereforer = 3y = 12, andz = 169/3—4-12—4-4/3 = 3, so the point on the planxz+4y+3z = 169
which is closest to the origin id 2, 4, 3).

Page 941: #61a.. Suppose Alpha Inc and Beta Ltd have profit functions given by
P(z,y) = 22> + 12z + zy —y — 10

Q(z,y) = =3y + 18y + 2zy — 22 — 15,
wherez is the price of Alpha Inc’'s good angis the price of Beta Ltd’s good. Supposing that the manadefdpha Inc and Beta
Ltd know calculus and know that the other manager knows t#as well, what price will the two companies set to maxintiesr
profits?
Solution: Since Alpha Inc can only control its own price, it will set fisce to the point wher#,, = 0. Similarly, Beta Ltd will set
its price to the point wherg, = 0. That is,

aP 9
OF _ gpi124y—0 292 6 i18+20—0.
ox oy

From the first equation we fing = 42 — 12. Substituting this into the second equation giveg4a — 12) + 18 4+ 22 = 0, which
simplifies toz: = 45/11. Plugging this back into the first equation then giyes 48/11.

Page 941: #61b.: Now suppose that Alpha Inc and Beta Ltd set their prices so asaimize their combined profit. Now what will
the optimal: andy be?

Solution: Now our profit function isR(z,y) = P(z,y) + Q(x,y) = —22% + 10z + —3y? + 17y + 3zy — 25. To maximize this
function with respect ta: andy, we will take the partials with respect toandy and set them equal to 0. This gives

OR OR
— =—-4r+104+3y=0, — =—-6y+17+3x=0.
oz dy

The first equation gives = (3y + 10)/4. Plugging this into the second equation yields 98/15. Substituting this value foy back
into the first equation gives = 37/5. Note that, with profit sharing, one company is quite willlogake one for the team!

9. HW #9: DUE FRIDAY, MARCH 1, 2013

Homework from handout
http://www. w Illi1ans. edu/ Mat hematics/symiler/public htnml/ 105/ handout s/ Met hodLeast Squar es. pdf

9.1. Problems: HW #9: Due Friday, March 1, 2013:

Exercise 3.3: Consider the observed d&i& 0), (1, 1), (2,2). Show that if we use (2.10) from the Least Squares handouéet m
sure error then the ling = 1 yields zero error, and clearly this should not be the beshfi |

Exercise 3.9: Show that the Method of Least Squares predicts the periodbittmf planets in our system is proportional to the
length of the semi-major axis to the 3/2 power.


http://www.williams.edu/Mathematics/sjmiller/public_html/105/handouts/MethodLeastSquares.pdf
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9.2. Solutions: HW #9: Due Friday, March 1, 2013:

Exercise 3.3: Consider the observed d&i& 0), (1, 1), (2,2). Show that if we use (2.10) from the Least Squares handouéet m
sure error then the ling = 1 yields zero error, and clearly this should not be the beshfi |
Solution: We will use equation (2.10) to calculate the error of the line 1. This gives an error functiofz (a, b) = Zﬁ;o (yi — (ax; +D)).
Evaluating the sum with the ling = 1 (which means = 0 andb = 1) gives an error of

By(0,1) = (0—1)4+(1—-1)+(2—-1) = 0.

The problem with (2.10) is that the errors are signed quanstiso during the calculation the positive errors cancetloeinegative
errors.

Exercise 3.9: Show that the Method of Least Squares predicts the periodbittmf planets in our system is proportional to the
length of the semi-major axis to the 3/2 power.
Solution: Using the numbers from the handout, namely

N N N N N N N N
a _ Zn:l 1 Zn:l TnlYn — Zn:l Ln Zn:l Yn b = Zn:l Tn Zn:l LTnlYn — Zn:l I?l Zn:l Yn
- N N N N ’ - N N N N ?
D=1 1D 1 T = D1 T D T D1 Tn Dot T = Dy T Doy L
we findN =8, 3% 1 =8 5%, = 9409461, 3.0 _, y,, = 14.1140384, 3.5 _ 22 = 29.29844102 and "> _, w,y, =
43.94486382. Feeding these into the equationsdandb in the handout give best fit valuesof= 1.49985642 andb = 0.000149738
(the reasorm is so close to zero is we have chosen to measure distancesdnasical units, precisely to make the proportionality

constant nice)Note that this is not a cookbook problem; this is one of thetimggortant calculations in the history of science, as it
was one of the three guideposts that helped lead Newton tawisf universal gravitation.

10. HW #10: DJE MONDAY, MARCH 4, 2013
10.1. Problems: HW #10: Due Monday, Mar ch 4, 2013:

Page 949: #18:: Use the exact value of(P) and the differentiallf to approximate the valug(Q), wheref(z,y) = /22 — 2,
with points P(13, 5) and@(13.2,4.9).

Page 949: #23:: Use the exact value of(P) and the differentiadlf to approximate the valug(Q), wheref(x,y, z) = e~ *¥* with
the pointsP = (1,0, —2) and@ = (1.02,0.03, —2.02).

Problem #3: Briefly describe what Newton’s Method is used for, and roydtaw it works.

Extra Credit: to be handed in on a separate paper: Let f(z) = exp(—1/2?) if || > 0 and 0 ifz = 0. Prove thatf") (0) = 0
(i.e., that all the derivatives at the origin are zero). Tihiplies the Taylor series approximation f@z) is the function which is
identically zero. Asf(x) = 0 only for x = 0, this means the Taylor series (which converges for:ptinly agrees with the function
atx = 0, a very unimpressive feat (as it is forced to agree there).
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10.2. Solutions: HW #10: Due Monday, Mar ch 4, 2013:

Page 949: #18:: Use the exact value of(P) and the differentiallf to approximate the valug(Q), wheref(z,y) = /22 — 2,
with points P(13,5) and@(13.2,4.9).

Solution: Applying the differentialdf = f,(a,b)Az + f,(a,b)Ay, we can approximate the valy&@). We havef(z,y) =
Va2 —y?, with points P(13,5) andQ(13.2,4.9). This meansAz = 0.2 andAy = —0.1. Take the partial derivatives gf with

respect tar andy. We get3l = L_andyl = 2 — ——L_ Wefinddf = —= x4

2x _
- 2\/w? —y2 - Var—y? 2/22 —y? Va2 —y? \/ﬂ (13,5)
Ay. Evaluating the partial derivatives at the points and pgtin the values oAz andAy givesdf = \/%(0.2) —

—y
Va2—y?1(13,5)

ﬁ(—o.l), or equivalentlydf = 22 + 53 = 0.2583. Now we just have to add the differentidf to f(P) to obtain an

approximation off (@), and obtainf(P) = /132 — 52 = 12. Thus an approximation of(Q) is 12 + .2583 = 12.2583. If you
prefer to use the notation of the tangent plane, what we lsave i
of of

= 13,5 — 13.2-13 — 4.9 —5).
2 = f3,5)+ Ox (13,5)( )+ Oy (13,5)( )

Page 949: #23:: Use the exact value of(P) and the differentiadlf to approximate the valug(Q), wheref(x,y, z) = e~ *¥* with
the pointsP = (1,0, —2) and@ = (1.02,0.03, —2.02).

Solution: Similar to Problem 18, we use the differentifil = f,(a,b)Az + f,(a,b)Ay to approximatef (Q). We havef (z,y, z) =
e~ *¥* with the pointsP” = (1,0, —2) and@ = (1.02,0.03, —2.02). Take the partial derivatives gfwith respect ta:, y, andz. This
gives gL = —yzemmvz, 8L — —gzemovz, GL — —zye=v= We now find the differentiadf. Notice that any terms multiplied by
will be 0 because point P id, 0,2). This simplifies the math significantlylf = —yze=*¥* o Z)Ax — xze TYF o 2)Ay —
zye Y2 o Q)Az. Evaluating the partial derivatives givelf = 0 — (1)(—2)e~M(©(=2)(0.03) — 0 = 2¢°(0.03) = 0.06.
We calculatef(P) and add it to the differentialf to obtain an approximation of (Q): f(P) = e~ MO@) = 0 = 1, s0
F(Q) =1+ 0.06 =1.06.

Problem #3: Briefly describe what Newton’s Method is used for, and roydtaw it works.

Solution: We use Newton’s Method to find such thatf(z) = 0. We start with an initial guess;,, and use the tangent line to
approximate our function with a line, and see where that$etets thes-axis. Calling that point:;, we then find the new point on
the curve with this as its-coordinate, and approximate again with the tangent linelak for the new intersection with theaxis,
and call that point». We keep iterating and hopefully the sequefieg, 1, z2, . . ., } converges to a solution tf(z) = 0.

Extra Credit: to be handed in on a separate paper: Let f(x) = exp(—1/22) if |z| > 0 and 0 ifz = 0. Prove thatf(")(0) = 0
(i.e., that all the derivatives at the origin are zero). Tihiplies the Taylor series approximation fdx) is the function which is
identically zero. Asf(xz) = 0 only for z = 0, this means the Taylor series (which converges fogaplinly agrees with the function
atz = 0, a very unimpressive feat (as it is forced to agree there).

First Proof (Professor Miller): The proof follows by induction. If you haven't seen inductjgyou can look it up online, check out
my notes, or see me. Basically, induction is a way to proviestants for all.. Let's use L'Hopital’s rule to find the derivative at O.
We start with the definition of the derivative, noting thfd0) = 0. We find

70) = 1im AW SOy exp(- 1R

h—0 h h—0 h
We now change variables; let= 1/h, so ash — 0 we havek — oo. We find
/ T exp(—kQ) BT
F10) = klggo 1/k T e exp(k2)’
Note this is of the formyo /oo, and we can use L'Hopital’s rule. We find
1

! = = lim ——.
110) hroo 2k exp(k?)

lim ————
K00 exp(k?)

As we no longer haveo /oo we stop, and see thgt(0) = 0.



SOLUTION KEYS FOR MATH 105 HW (SPRING 2013) 19

To find the second derivative, we argue similarly. We now kitloat

oo J—Zexp(=1/2?) ifxz#0
f(x)_{o if 2 = 0.

We again use the definition of the derivative and L'Hopitalite. In general the!" derivative is of the fornp,,(1/z) exp(—1/z?)
for x # 0 and0 if x = 0, wherep,, is polynomial with finitely many terms. We then just use L Hial

Second Proof (2011 TA David Thompson): Let f(x) = exp(—1/22) for x # 0 and f(z) = 0 for » = 0. We want to show that

all of the derivatives off (x) vanish whenc = 0. Notice that it's not even clear whether this function is @diferentiable, let only

infinitely differentiable! However, it can be shown (usirgghniques from real analysis) thétr) is indeed infinitely differentiable.

We will simply assume this to be true. Sin¢ér) is infinitely differentiable (meaning all of its derivatis@re continuous), we need

only show that the limit off ") (z) = 0 asz — 0; by continuity, this will imply f(*)(0) = 0. Making the change of variables

x — 1/y, we see that this is equivalent to showing that all the déviea of the functiony(y) = exp(—y?) approach 0 ag — oc.
Let's think about derivatives of(y). We see

9'(y) = —2yexp(—y°) = —2yg(y).
Remember that the exponential function decays faster thgpalynomial; that is, ifp(y) = ap + a1y + - - - + any™ with a; € R,
then
o P

y=+o0 exp(y)
Thereforey’(y) — 0 asy — oo, since we can writg’(y) as a polynomial iry divided by an exponential function. Suppose we knew
thateveryderivative ofg(y) could be written as a polynomial intimesg(y). By the same argument as above, this would imply that
every derivative of)(y) decays to 0 ag goes to infinity. Remember this would imply that every deffixaof f(x) is 0 whenx = 0,
which is what we want to show. Our new task, then, is to showebery derivative org(y) can be written as a polynomial jntimes
9(y).

To prove this claim we are going to use mathematical indadifoyou haven't seen this before, check out Professor Wlleotes
online). Our claim is that for all positive integers then!” derivative ofg(y), g™ (y), can be written a4, (y)g(y) whereh,,(y) is a
polynomial iny. Notice that we've already shown the base case 1. Suppose that our claim holds for some- & > 1; we show
it holds forn = k + 1.

If ¢*(y) = hr(y)g(y), then we have

gk+1(

y) = h@ay)+9' (y)h(y)
= hp(y¥)9(y) — 2yg9(y)hi(y)
= g(y)(h(y) — 2yhe(y))-
Letting hi11(y) = hi(y) — 2yhi(y), we see thay* 1 (y) = hyt1(y)g(y), so we can indeed write*™!(y) as a product of a
polynomial iny timesg(y), and we've proven our claim.
Thereforef (z) really is as strange as we claimed: despite having all ofetsvdtives equal 0 at the origirf,(x) only equals O
whenz = 0. Thus the Taylor Series expansionfdf:) aboutz = 0 only agrees witty (z) at one point!

Q

11. HW #11: DUE WEDNESDAY, MARCH 6, 2013

11.1. Problems. HW #11: Due Wednesday, March 6, 2013: Note: the notation for this homework is a bit annoying. Faareple,
imagine we have a functiofi : R* — R andx,y,z : R? — R, so we haved(u,v) = f(x(u,v),y(u,v), z(u,v)). If we want to
figure out how this compound function changes with prefer to writeg—;‘; however, the book will often overload the notation and
write %. | think this greatly increases the chance of making an garmstrongly suggest introducing another function name.

Page 960: #2: Find dw/dt both by using the chain rule and by expressingxplicitly as a function of before differentiating, with

W = iy, u = cos(2t), v = sin(2t).

Page 960: #5: Find Ow/ds andOw /0t with w = In(2? + y? + 22),x = s —t,y = s + t, 2 = 2V/st.

Page 960: #8: Find Ow/ds anddw /ot with w = yz + zx + xy, . = 82 — 2,y = 82 + 12, 2z = %2,

Page 960: #34: A rectangular box has a square base. Find the rate at whighlitsne and surface area are changing if its base is
increasing at 2 cm/min and its height is decreasing at 3cmétiihe instant when each dimension is 1 meter.

Page 960 #41: Suppose that = f(u) and thatu = = + y. Show thabw/dx = dw/dy.
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11.2. Solutions: HW #11: Due Wednesday, March 6, 2013: Note: the notation for this homework is a bit annoying. Foareple,
imagine we have a functiofi : R*> — R andx,y,z : R? — R, so we haved(u,v) = f(x(u,v),y(u,v), z(u,v)). If we want to
IA.

figure out how this compound function changes witH prefer to write 2 ; however, the book will often overload the notation and
2]

write 5,—-7’:. I think this greatly increases the chance of making an garmistrongly suggest introducing another function name.

Page 960: #2: Find dw/dt both by using the chain rule and by expressingxplicitly as a function of before differentiating, with
w = uz—_lwz, u = cos(2t), v = sin(2t).

Solution: To use the chain rule, we need to consideas a function ofu andwv, which are in turn functions of; here%—if = %,
9 = 4% and 5t = 42 as all are functions of just one variable. Let us wiite) = f(u(t),v(t)), with f(u,v) = 1/(u* +v?),
u(t) = cos(2t), v(t) = sin(2¢). We have

ow af ou 3_f ov dw 8_f du 8_f dv

Bt 0ulu)w) Ot T 00w B O dE | Bul ) db T 00 (ue)ow) db
We seef, = 0f/ou = —(u® +v3)72 - 2u, f, = Of/Ov = —(u® +v?)72 - 2u, du/dt = —2sin(2t) anddv/dt = 2 cos(2t).
Remembering to evaluaf, andf, at (u(t),v(t)) = (cos 2t,sin 2t), we find
dw _ 4cos(2t)sin(2t)  4sin(2t)cos(2t)
dt  cos?(2t) +sin?(2t)  cos2(2t) +sin(2t)

For the second approach, we writeas a function of and differentiate. We see
1
w(®) cos?(2t) + sin(2t)?

As w(t) is constant, differentiating givesv/dt = 0, as we found above.

Page 960: #5: Find 0w /0s anddw /0t with w = In(2? +y* + 2%),z = s —t,y = s + 1, 2 = 2¢/st.

Solution: Again, to minimize the chance of error, we’'ll introducing lageholding functiory, and haveuv(s,t) = f(x(s,t),y(s,t), z(s,t). As we
vary s keepingt fixed, w can change for three reasons: a changedan cause a change in which can cause a change fna change irs can
cause a change in which can cause a changejinor a change i can cause a change inwhich can cause a changefinThe Chain Rule says

ow _ Of dr Of dy Of 0z

Bs 0zl (@(s,)y(s,,2(5,0) DS OY |(@(s,),0(5,0),2(5,6) DS | 02 |((s,0),5(s,8),2(s,)) DS~
Therefore we have

ow 2x(t, s) n 2y(t, s) n 2z(t, s) 2Vt
s x(t,s)2+y(t,s)2 +z2(t,5)2  x(t,s)2 +y(t,8) +2(t,5)2  x(t,s)2 +y(t,5)% + 2(t,5)2 2¢/s
Substituting forz (¢, s), y(t, s), andz(t, s) gives 2 = 22555 = 25
Similarly, we can write
ow _ of ox _ of o, of 0z
Ot 0z l(w(s,t)y(s,t)z(s,) Ot Oy l(@(s,6),y(s,8),2(s,6)) Ot 02 | (w(s,6),y(s,8),2(s,t)) Ot
Giving
ow —2z(t, s) n 2y(t, s) n 22(t, s) 2./s
ot w(t,s)? +y(t,s)2 4 2(t,8)%  w(t,s)> +y(t,s)? +2(t,8)%  (t,5)2 +y(t,s)? +2(t,5)2 2/t
Substituting forz(t, s), y(t, s), andz(t, s) gives 52 = 2.

Page 960: #8: Find 9w /s anddw /0t with w = yz + zx + zy, x = s> — %,y = s> + 1%, z = s°t%.
Solution: Let's writew(s,t) = f(x(s,t),y(s,t), 2(s,t)). The Chain Rule gives

ow  0f 8x+8f 8y+8f 0z

ds 0z l@(s,0,(s,0,2(5,0) 05 Y l(2(s,0),u(5,6),2(5,6) D5 Dz | (a(s,6),u(5,6),2(5,6)) DS

hs 1o} 1o} 1o}
of _ of _ af _
8miz+y’ é)yizﬁ_:c7 0z =yt
and
Oxr @ _ % Y
E—Qs, s = 2s, 83—22587
we have 5
8—1: = (2(s,t) + y(5,1))(25) + (2(5,) + x(s,1))(25) + (y(5,) + (s, 1)) (2t°5).

Substituting forz (s, t), y(s,t), andz(s, t) gives
ow

55 = (%2 + 5% + 1) (25) + (s°1° + s° — t7)(25) + (25°)(2t°s) = 45°(1 + 2t7).
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Similarly, we can write
ow  Of or Of oy Of 0z

— - — = 4 == .
ot 0% |(2(5,8),y(s,t),2(5,6)) Ot OY l(@(s,8),y(s,t),2(5,8)) O OZ l(w(s,t),y(s,t),2(s,t)) Ol
Using our values for the partials ¢ffrom above gives

%—1: = (2(s,) +y(s,))(=20) + (2(s,8) + x(s,£)) (2t) + (2 (s, ) + y(s,1))(2571),
and then using
or B @ B % o2
o5 = 2 g =2 5 =257
and substituting for: (s, t), y(s,t) andz(s,t) gives
%—1: = (522 + 57 + 1) (=2t) + (s°1° + 5° — £7)(2t) + (25°)(25°t) = 4t(s* —t°),

Page 960: #34: A rectangular box has a square base. Find the rate at whigblitse and surface area are changing if its base is incigasip
cm/min and its height is decreasing at 3cm/min at the instéiein each dimension is 1 meter.

Solution: Let's call the box’s length, its widthy, and its height. Since the box has a square base, we havey. The volume of the box is given
by zyz = x°2. We're also going to think of andz as functions of time, soV (t) = f(x(t), z(t)) with f(z, z) = 2°z. The Chain rule gives

v _of do  Of 9z AV _ Of dw  Of dz
Ot Ozl@®,=t) Ot 0z l(a(t),=(t)) Ot dt — Oxl@w),-m) dt = 0z l(x(t),2)) dt
From the statement of the problem, we kndw/dt = 2 anddz/dt = —3. Differentiating givesf, = 2zz and f. = 2°. Therefore% =

da(t)2(t) — 3z(t)%. Whenz(t) = z(t) = 1, we havedV/dt = 1, meaning the volume is increasing at a rate of one cubicroetgir per second.
To calculate the rate at which the surface area is changawlirthe surface area ¥xy + 2z + yz) = 2(2* + 2z2) (sincex = y). Set
A(t) = g(x(t), 2(t)) with g(x, 2) = 2(2* + 2x2). The Chain rule gives
0S _ Og dx  Og 0z ds _ Odg dx  Og dz
Ot Oz l@w.aw) 0t | 0z lw),-)) OF U T e @)= dt | 0z l(w(e),=)) dt
Taking the derivatives and usinly/dt = 2 anddz/dt = —3 gives
ds
dt
Therefore, whem:(t) = z(t) = 1, the surface area is changing at a rate of 4 square centsmgesecond.

= 4(2x(t) + 22(t)) — 12z(t) = 8z(t) — 4z(t).

Page 960 #41: Suppose thawy = f(u) and thatu = = + y. Show thabw/dx = dw/dy.
Solution: Let’s first think about what this problem means. We havas a function of one variabla, which we know want to think of as a function
of two variablesx andy, using the relationship = = + y. Claiming thatbw/9x = dw/dy essentially means that we achieve the same effect by
varyingy a little bit as we do by varying: that same little bit. This makes sense, since if we incredsg0.1 and leave constantu increases by
0.1; alternatively, if we increasgby 0.1 and leave constantu again increases by 0.1.

More formally, let's writew(z, y) = f(u(z,y)), SO

0 1o} 19} /

rri a—£ u(z,m—z = flula,y)-1 = f(ulz,y)),
0 0 0 / /

8_7:1/0 - 8_;1: u<z,y>8_Z = St = S )

Sodw/dx is indeed equal tow/dy.

12. HW #12: DUE FRIDAY, MARCH 8, 2013
12.1. Problems: HW #12: Due Friday, March 8, 2013:

Page 971: Question 3:: Find the gradien¥ f at P wheref(z,y) = exp(—z* — y*) and P is (0,0).
Page 971: Question 10:: Find the gradien¥ f at P wheref(z,y, 2) = (2x — 3y + 52)° and P is (-5,1,3).

Page 971: Question 11:: Find the directional derivative of (z,y) = = + 2xy + 3y? at P(2,1) in the direction = (1,1). In other words,
compute(Dg f)(P) whered = 9/|v].

Page 971: Question 19:: Find the directional derivative of(x, y, z) = exp(xyz) at P(4, 0, —3) in the directiont’ = (0, 1, —1) (which isj — k).
In other words, computéD; f)(P) whereu = ¢/|4].

Page 971: Question 21:: Find the maximum directional derivative ¢fz,y) = 22* + 3zy + 4y at P(1, 1) and the direction in which it occurs.
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12.2. Solutions. HW #12: Due Friday, March 8, 2013. Page 971: Question 3:: Find the gradien¥ f at P wheref(z,y) = exp(—z? — y?)
andP is (0,0).
Solution: {f., fy) = (—2x exp(—z* — y?), —2y exp(—x? — y*)). Plugging inP(0, 0), we have the gradient & is (0, 0).

Page 971: Question 10:: Find the gradien¥ f at P wheref(z,y, z) = (2x — 3y + 52)° and P is (-5,1,3).
Solution: (fu, fy, f-) = (10(2x — 3y + 52)*, —15(2x — 3y + 52)*,25(2x — 3y + 52)*), and evaluating aP gives the gradient there is just
(10(16), —15(16), 25(16)) or (160, —240, 400).

Page 971: Question 11:: Find the directional derivative of (z,y) = z* + 22y + 3y* at P(2, 1) in the directiond = (1,1). In other words,
compute(Dz f)(P) whered = v/|v].
Solution: As |5 = /12 + 12 = /2, normalizing givesi = 4/v/2 = (1/+/2,1/+/2). Using our formula we haveéD; f)(P) = (fx, fy)| i =
P
(2% + 2y, 2% + 6y>‘ -{1/+/2,1/+/2). Plugging in the values for andy, we have(D; f)(P) = (6,10) - (1/v/2,1/1/2) = 8V/2.
P
Page 971: Question 19:: Find the directional derivative of (z, y, z) = exp(zyz) at P(4, 0, —3) in the directions’ = (0, 1, —1) (which isj — k).
In other words, computéD; f)(P) whereu = ¢/|4].
Solution: As |5] = /12 + (—1)2 = /2, we haveii = (0,1, —1)/v/2 = (0,1/+/2, —1/+/2). The gradient is
Df = (yze™* zze™7 xye™?) = (0,—-12¢°,0) = (0,—12,0),
S0D, f(P) = (0,-12,0)(0,1/V2, —1/v/2) = —6/2.
Page 971: Question 21:: Find the maximum directional derivative ¢fz,y) = 22% + 3zy + 4y at P(1, 1) and the direction in which it occurs.
Solution: The maximum directional derivative is in the direction oé thradient (the minimum is in the opposite direction). Thedgnt of f is
Df = {4z + 3y, 3z + 8y), which atP is (7,11). A unit vector in this direction isi = (7,11)/[(7,11)|. As [{7,11)| = /7% + 112 = /170,
the directional derivative is largest in the directi@r= (7/1/170,11/4/170). To find the maximum value, we just need to computs; /) (P) =

(Df)(P) - i, which is(7,11) - 7/+/170,11/4/170. This is just(7* + 11%) /4/170 = +/170; it is not a coincidence that this is the magnitude of the
gradient!

13. HW #13: DJE MONDAY, MARCH 11, 2013
13.1. Problems: HW #13: Due Monday, March 11, 2013.

Question 1. Use Newton’s Method to find a rational number that estimdtestuare-root of 5 correctly to at least 4 decimal places.

Question 2. Let w(r,s,t) = f(u(r,s,t),v(r, s, t)) with f(u,v) = u?® + v, u(r,s,t) = tcos(rs) andv(r, s,t) = tsin(rs). Find the partial
derivatives ofw with respect to-, s andt both by direct substitution (which is very nice here!) andlyy chain rule.

Question 3: Write (1/2,+/3/2) in polar coordinates.
Question 4: Find the tangent plane to= f(x,y) with f(z,y) = 2y + /= + y at(1, 3), and approximate the function @0, 1.2).

General comments: These problems are all done the same way. L et’s say we have functions of threevariables, x, y, z. Find the function to
maximize f, the constraint function g, and then solve V f(z, y, 2) = AVg(z,y, z) and g(z,y, z) = c. Explicitly, solve:

of N

%(:C7y7z) - )‘ax(m7y7’z)

of 9y

8_y(x7y7z) - )‘ay(:c7y7z)

of _ 2\

5, U2 = Ag(,y,2)
9(z,y,2) = ¢

For example, if we want to maximize zy>2° subject toz + y + z = 4, then f(z,vy,2) = 23?2 and g(z,y, 2) = = + y + z = 4. Thehardest
part isthe algebra to solve the system of equations. Remember to be on the lookout for dividing by zero. That is eeallowed, and thus you
need to deal with those cases separately. Specifically,éfdbantity you want to divide by can be zero, you have to coaestk a separate case
what happens when it is zero, and as another case what happemsn it is not zero.

Page 981: Question 1. Find the maximum and minimum values, if any, fffr, y) = 2= + y subject to the constraint® + y* = 1.

Page 981: Question 14: Find the maximum and minimum values, if any, fifr, y, z) = 22 + y* + 2> subject to the constraint' + 3* + 2* = 3.
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13.2. Solutions: HW #13: Due Monday, March 11, 2013. Question 1: Use Newton’s Method to find a rational number that estimdtes¢uare-
root of 5 correctly to at least 4 decimal places.

Solution: We use the functiorf(z) = z* — 5 and we start withco = 2. The equation of the tangent linegs— f(xo) = f'(zo)(x — z0). As
f(2) = —1andf’(2) = 4, the tangent line ig — (—1) = 4(x — 2). We find thex-intercept by setting = 0 in the tangent line, and this gives us
our next guessy:. Thusl = 4(z; — 2) orz; = 9/4. If we worked more formally, we would have found that = 2 — ff—fz)) =9/4 = 2.125.

Performing this process again gives = 2.125 — f,(é‘_lé?) = 2.238971, and one more time givess = 2.238971 — ﬁ%ﬁ%ﬂ) = 2.23607. If

we instead starting withy = 3 as our guess, the first tangent line wouldybe f(3) = f/(3)(x — 3). As f(3) = 4 and f'(3) = 6, the tangent line
here isy — 4 = 6(x — 3). Thez-intercept is wherg = 0, soz; is found by solving—4 = 6(x1 — 3), which givesz; = 14/6 = 7/3. The next
guess isc; = 47/21, followed byzs = 2207/987 ~ 2.236068896.

Question 2. Let w(r,s,t) = f(u(r,s,t),v(r,s,t)) with f(u,v) = u?® + v, u(r,s,t) = tcos(rs) andv(r,s,t) = tsin(rs). Find the partial
derivatives of w with respect to r, s and t both by direct sitissdn (which is very nice here!) and by the chain rule.

Solution: We substitute (plug in) the functional expressionsidandv, then we haveo(r, s, t) = (t cos(rs))? 4 (tsin(rs))? = t*(cos?(rs) +
sin®(rs)) = t*. So2% = 2¢, 22 = 2% — (. For the chain rule, we have

' Os or
ou _of ou, of o0
Or  Oul(u(rs,t),o(mst) Or OV l(u(r,s,t)v(rst) O
We haveg—ﬁ = 2u and% = 2v, while % = —tssin(rs) and% = tscos(rs). Substituting (and evaluating the derivatives at the rjgdint)
gives
ow _ 2u (—tssin(rs)) + 2v (tscos(rs)) = —t*s cos(rs) sin(rs) + t*ssin(rs) cos(rs) = 0.
or (u(r,5,6),0(r,5,1)) (u(r,5,6),0(r,5,1))

The other derivatives are computed similarly.

Question 3: Write (1/2,+/3/2) in polar coordinates.
Solution: Polar coordinates are = r cos@ andy = rsin 6, orr = \/x2 + y? andf = arctan(y/x). We first find the radiusr = /22 + y2 =
/1/4+3/4 = 1. To find the angle, knowing = 1 we seesin § = /3 /w (or tan(d) = v/3), sod = /3. Hence the expression (%, /3).

Question 4: Find the tangent plane to= f(x,y) with f(z,y) = 2%y + /= F y at(1, 3), and approximate the function @t.9, 1.2).

Solution: The equation of the tangent planezis= f(1,3) + 2L(1,3)(z — 1) + 2—5(1,3)(31 —3). We havef(1,3) = 5, 2L = 22y + #er)

which at(1, 3) equals22, while g_i =%+ 575 Which at(1, 3) equalss + 22 (.9 — 1) + (1.2 - 3) = §f, which is approximately 2.125. The
actual value at = 0.9,y = 1.2 is z = — 2L = —2.6375. The reason our approximation is off by so much is that we tifeegpoint(.9, 1.2), and

80
1.2 is a ways from 3.

General comments. These problems are all done the same way. L et’s say we have functions of threevariables, x, y, z. Find the function to
maximize f, the constraint function g, and then solve V f (z, y, 2) = AVg(z,y, 2) and g(z,y, z) = c. Explicitly, solve:

of N

%(:C7y7z) - )‘ax(m7y7’z)

of 9y

8_y(x7y7z) - )‘ay(:c7y7z)

of _ 2\

9, U2 = Ag(,y,2)
9(z,y,2) = ¢

For example, if wewant to maximize zy>2> subject to z 4+ y + z = 4, then f(z,vy,2) = 2y°2* and g(z,y, 2) = = + y + 2 = 4. Thehardest
part isthe algebra to solve the system of equations. Remember to be on the lookout for dividing by zero. That is eeallowed, and thus you
need to deal with those cases separately. Specifically,éfdbantity you want to divide by can be zero, you have to coastk a separate case
what happens when it is zero, and as another case what happemsn it is not zero.

Page 981: Question 1: Find the maximum and minimum values, if any, fffz, ) = 2z + y subject to the constraint® + y* = 1.

Solution: We use of the method of Lagrange multipliers to solve for taitsed optimization. We set up the appropriate equatignseiting the
gradients proportional to each other with proportionatipnstant\, and remember that the constraint equation must hold as Welis, we are
looking for (x, y, \) such that V f)(z,y) = AM(Vg)(z,y) andg(z,y) = z* + 3> = 1. The gradien¥ f(z,y) = (2, 1). This is obtained by just
taking the partial derivatives of th&x, y) with respect to its variables. Taking the gradient of thest@int givesVg(z,y) = (2, 2y).

We set up the equations? f(x,y) = AVg(z,y), so{(x,1) = \(2z,2y), and alsaz® + 3> = 1 (it is very important not to forget this, as
otherwise we have two equations in three unknowns, which svar-determined system). We now solve the equations fdr eariable by setting
the components of the gradients as equal. We have thred@mua = A2z, 1 = A2y andz? + y? = 1.

One way to solve this is to take ratios; unfortunately, wedneebe careful: what i or y is zero? Well, ify = 0 then the constraint equation
becomes:®> = 1 sox = +1, leading tof (1,0) = 2 andf(—1,0) = —2. If insteadz = 0 then the constraint equation becomés= 1 soy = =+1,
leading to the point$0, 1) and (0, —1), which evaluate undef to 1 and -1, respectively.

If now z does not equal zero, then dividing the second equation bfjriteliminates the\’s, and we find2/1 = z/y, sox = 2y. Substituting
into 2% 4+ y* = 1 gives5y? = 1 ory = +1/+/5, and thus we get the candidate poifitsy) = (2/v/5,1/4/5) and(—2/+/5, —1/+/5). Evaluating
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f at the first gives3/+/5 while evaluatingf at the second gives 3/+/5. We thus see the maximum value pis not 3/+/5 but rather 2, and’s
minimum value isnot —3/+/5 but rather -2. In other words, it is very important to rementhe candidates that can arise from dividing by zero!

Remark: looking at the function, we see we waib be as large (small) as possible for the maximum (minimamg,thus it is not unexpected
that these occur when = 0.

Page 981: Question 14: Find the maximum and minimum values, if any, fifr, y, z) = 2 + y* + 2> subject to the constraint' + 3* + 2* = 3.
Solution: We use Lagrange Multipliers. The gradients &f¢(z,y) = (2x,2y,2z) andVg(z,y, z) = (4a®,4y*, 42°). We set up the equations
Vf(x,y,2) = AVg(z,y,2) andg(z,y, z) = z* + y* + 2* = 3, leading to(2x, 2y, 22) = (4>, 4¢3 42°) andg(z,y, 2) = «* +y* + 2* = 3.
Writing things out, we have the three equatiopu$ the constraint, of coury@z = Max?, 2y = My?, and2z = \dz2®.

These functions are symmetrical and simplify the algebsaidk. Assume first that none of the variables equal zero. Biglitig both sides of the
first equation by2z, both sides of the second equationZyy and both sides of the third equation &y, we can easily see the relationship between
the three variablest = \2z2, 1 = A2y and1 = A\2z2. This leads the squares of the three variables being equahaker = +y andz = +z,
since the square of any of these equals the square of andtnesz? 4 y* + 2! = 3 becomesz® = 3y* = 32* = 3, sox,y, 2z € {1,-1}. The
candidate points are the eight poiifts1, £1, +1), all of which evaluate t@ underf.

What about the case when some of the variables are zero?tlifedl are zero, the constraint cannot be satisfied. If twaem@ then the third
must equat-3'/4, and this point evaluates ®/2 ~ 1.732 under f, larger than the values seen above! What if only one varisbtero, for
definiteness say. Then we may divide the first equation By and the second bgy, finding1 = 2X\z? = 2\y?, soz = +y and2z* = 3
(from z* + y* + 2* = 3). This givesz = +(3/2)"/* = +y, and thus the candidate poirtts:(3/2)'/4,+(3/2)*/*,0) evaluate undey to
V/3/2 + /3/2 ~ 2.44949. There are lots more points like thig, +(3/2)'/*, £(3/2)"/*) and(£(3/2)*/*,0, £(3/2)'/*), all evaluating under
f to the same. Thus the maximum is occurring at one of the puihese we would have divided by zero, while the minimum ocairghe point
where all are equal in absolute value.

14. HW #14: DUE WEDNESDAY, MARCH 13, 2013
14.1. Problems: HW #14: Due Wednesday, M arch 13, 2013.

Page 981: Question 19: Find the point on the lin8z + 4y = 100 that is closest to the origin. Use Lagrange multipliers taimize the SQUARE
of the distance.

Page 981: Question 35: Find the point or points of the surface= xy + 5 closest to the origin.
Page 981: Question 51: Find the point on the parabola = (x — 1)? that is closest to the originNote: after some algebra you'll get that

satisfie2(z — 1)* + z = 0 (depending on how you do the algebra it may look slightlyediffit). You may use a calculator, computer program, ...
to numerically approximate the solution.
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14.2. Solutions: HW #14: Due Wednesday, March 13, 2013.

General comments: These problems are all done the same way. Let’s say we have functions of three variables, x, y, z. Find the function to
maximize f, the constraint function g, and then solve V f(z, y, 2) = AVg(z,y, 2) and g(z,y, z) = c. Explicitly, solve:

of _ 299

B (v,y,2) = /\ax (z,y,2)

of _ 299

(9y (CC7y,Z) - )‘ay(:c7y7z)

of N/

52 (,y,2) = /\az (z,y,2)
g9(z,y,2) = ¢

For example, if wewant to maximize 2y>2> subject to z 4 y + z = 4, then f(z,y,2) = 2¢°2* and g(x,y, 2) = « +y + 2 = 4. Thehardest
part isthe algebra to solve the system of equations. Remember to be on the lookout for dividing by zero. That is eeallowed, and thus you
need to deal with those cases separately. Specifically,éfdbantity you want to divide by can be zero, you have to coaes#k a separate case
what happens when it is zero, and as another case what happemsn it is not zero.

Page 981: Question 19: Find the point on the lin8xz + 4y = 100 that is closest to the origin. Use Lagrange multipliers taimize the SQUARE
of the distance.

Solution: Because we are solving for the square of the distance, weftake)) = (/22 + y2)* = 2> + y2. Since the distance is being squared,
the square root is being canceled out, which significanthpsfies the algebra and the calculus. Our constraint ismgigeus as our point must lie
on the line3z + 4y = 100. We apply the method of Lagrange multipliers and set theignasl of both functions to be proportional to each other.

The gradientV f(x,y) = (2z,2y), andVg(x,y) = (3,4). The equations to solve aféf(z,y) = AVg(zx,y) with 3z 4+ 4y = 100, so
(2z,2y) = A(3,4) with 3z + 4y = 100. We now solve the equations for each variable by setting tihheponents of the gradients as equal. We
have the two equatiors: = 3\ and2y = 4, plus of course the constraist: + 4y = 100.

We solve each of the first two equations fgras that will allow us to find a nice relation betweerandy. If we divide both sides of the first
equation by 3, we can isolage So2z/3 = \; similarly the second equation givgg2 = . Setting these equal to each other gi2eg3 = y/2
orz = 3y/4 ory = 4z/3. By plugging that value into the constraint function, we € the candidate point. We hage: + 4(%) = 100, so
25z = 300 orz = 12, givingy = 242 = 16. The optimal point i12, 16).

Alternate geometric solution (advanced): We can also sibligegeometrically, if we remember the product of the slaggeerpendicular lines is
-1. As this line has slope -3/4, frojn= —3z /4 + 25, the slope of any perpendicular line must be 4/3. A point atlthe is (0,0), thus the equation
of that line isy — 0 = (4/3)(x — 0) or y = 4z /3. We need the intersection of this and our original line, sone@t (x, y) such thaty = 4x/3 and
3z + 4y = 100. The second equation becon$as+ 16x/3 = 100 or 25x/3 = 100 and thust = 12, exactly as beforeNO CALCULUS!

Page 981: Question 35: Find the point or points of the surfage= xy + 5 closest to the origin.

Solution: Again we'll be minimizing the square of the distance to siifygthe algebra. We také (z,y, z) = (v/22 + 32 + 22)? = 2? + ¢ + 2°.
Our constraintis = zy + 5 or g(z,y,2) = zy — z = —5. We apply the method of Lagrange multipliers and set theignasl of both functions
proportional to each other (with proportionality constaht The gradients ar¥ f(x, y, z) = (2z, 2y, 2z) andVg(z,y) = (y, =, —1).

We set up the equations f(x,y) = AVg(z,y) with g(x,y) = —5, so(2z, 2y, 2z) = Xy, z, —1). We solve the equations for each variable by
setting the components of the gradients as equal. We hae dguations2z = Ay, 2y = Az, 2z = A\(—1), and of coursg(z,y,2) = zy — z =
—5.

If x = 0 then sincez = Ay we have eithed = 0 ory = 0 (or both). If A\ = 0 thenz = 0 from 2z = —\, but then the constraint cannot be
satisfied. Thus\ # 0, so if x = 0 then we must havg = 0. The constraint equation (with = y = 0) implies thatz = 5, giving us the point
(0,0, 5) whose distance-squared to the origin is 25. We get the sasveeaif insteady = 0.

We may thus assume now that neithemnor y is zero. In this case we may divide the first equation by thersgicand find2z /2y = \y/Az, or
x/y = y/x, orz® = y? which impliesz = 4. If 2 = y then the first equatior2z = \y, becomegx = \z. Asz # 0 we see\ = 2. The third
equation then give8z = —\ = —2s0z = 1. The constrainty — z = —5 becomes:? + 2 = —5 or 2 = —7, which has no solution.

Continuing to assume neither nor y is zero, we see that it must be the case that= —y. In this case, the first equation becomes
2z = \y = —\z, SO = —2. The third equation2z = —\ = 2 now givesz = 1. The constrainty — z = —5isnow —z% — 1 = —5
orz? = 4. Thusz = £2, andy = —2 andz = 1, giving us the candidate poinfg, —2,1) and(—2, 2, 1), whose distance-squared to the origin is
9, smaller than the 25 we saw above. Thus, these are the taestlpoints.

Page 981: Question 51: Find the point on the parabola = (x — 1)? that is closest to the originNote: after some algebra you'll get that
satisfie2(z — 1)* + z = 0 (depending on how you do the algebra it may look slightlyediffit). You may use a calculator, computer program, ...
to numerically approximate the solution.
Solution: Again we'll be solving for distance squared using the methbdagrange Multipliers. Ouy (z,y) = (/22 + »2)* = 2* + y* and our
constraintigy = (x — 1)? or g(z,y) = (x — 1)? — y = 0. The gradients ar& f(z, y, z) = (2z,2y) andVg(z,y) = (2(xz — 1), —1).

We set up the equation¥. f(z,y) = AVg(z,y) and(z—1)? —y = 0, so(2z, 2y) = A\(2(z—1), —1) (and of course the constraint holds). Now
solve the equation for each variable by setting the compsnafrthe gradients equal. We have two equatidhs= \2(z — 1) and2y = A(—1).
We use the second equation to isolatewhich is A = —2y. Substitute that into the first equation to obtain a relatiop between: and y:
2z = (—2y)(2(z — 1)) or —2y, which becomeg(;—fl) = y solong ast # 1. Note that ifx = 1 theny = 0, giving a distance-squared
of 1.

2x —
2(xz—1) —
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Now solve for the optimal using the constraint function tigh substitution. Our constraint beconfies: (z—1)* — z(;—jl) or cross multiplying

gives2(z — 1)® + = = 0. Taking the advice of the book, we can enter that equatianangraphing calculator or Mathematica to solve for the
optimal point which i50.410245, 0.347810). We could also use divide and conquer or Newton’s method btfia root!

15. HW #15: DUE MONDAY, APRIL 1, 2013
15.1. Problems: HW #15: Due Monday, April 1, 2013. Page 1004: Question 15: Evaluatef,’ [’ (zy + Tz + y)dzdy.

Page 1004: Question 24: Evaluate[, [ e ¥dzdy
Page 1004: Question 25: Evaluate[" [" (zy + sin z)dzdy.
Page 1005: Question 37: Use Riemann sums to show, without calculating the valueefrttegral, thad < fo” fo” sin \/Tydzdy < 7.

Extracredit: LetG(z) = f;”:o g(t)dt. Find a nice formula fot?’(z) in terms of the functions in this problem.
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15.2. Solutions: HW #15: Due Monday, April 1, 2013. Page 1004: Question 15: Evaluatefo3 fog(xy + Tz + y)dxdy.
Solution: We start by integrating the inside first, which gives us

3 3 3
/ / (zy + 7Tz +y)dedy = / [:czy/Q—i— 7232/2 —|—:cy]z:0 dy
o Jo 0

3
/ [9/2 + 63/2 + 3y] dy
0

3
= /(15y/2+63/2)dy
0
15y2‘3 63y‘3 135 189
= 22 = 224 22— 128.95.
4 0+ 2 lo 4 + 2 8.25

Page 1004: Question 24: Evaluate[, [ e*™¥dzdy
Solution: We start by integrating the inside first. As we are integtirith respect tac, the anti-derivative oé* ¥ with respect tac is juste”?.
Note we may also write it as”e?; written like this, we seeV functions like a constant. Evaluating@and1 givese! ¥ — e®™¥ =¢ . e¥ — eV =

1
e¥(e — 1). We now integrate this with respectgoand find(e — 1)e¥
0

1 r1 1 1
//ex+ydwdy — / |:6ac+y ]dy
o Jo 0 =0
1
/(el+y—ey)dy
0

= Ll(e— 1)eY = (e—1)eY

Page 1004: Question 25: Evaluate[;" [" (xy + sin z)dzdy.
Solution: We start by integrating the inside first, which gi@szy’ﬂ — cosx "
=0 r=

= (e — 1)e — (e — 1)1. Alternatively, we may write this out as

: — (e—1)e—(e— D).

2 2 . . .
or 5y — (=1 — 1) = %y + 2. Integrating this now with
0

. 2
respect tay gives 4-

) + 27;’7r = 7" /4 + 27, Alternatively, we may write this as
0 0

//(xy—!—sin:c)d:cdy = /{15023/7r —cosa| }dy
o Jo o L2 =0 =0
™ ’]T2
= —y+2)d
J; Goe2)
2 x 4
= L +2y| = — +2m.
4 lo

Page 1005: Question 37: Use Riemann sums to show, without calculating the valueefrttegral, thad < fo" fo" sin /zydxdy < 7.

Solution: The idea here is to find the upper and lower bound for the integiWe know thasin ,/zy reaches its maximum valuewhen,/zy =
m/2. We also know that sincé < z,y < 7,0 < \/zy < 7. This means thad < sin/zy < 1. We use the simplest possible Riemann sum,
namely just one partition (so our partition is the origirettangle). As the rectangle has area

pi2, the lower sum is the minimum value time$, or 0, while the upper sum is the maximum value times the afesor 1 - 72. Thus0 <

JJ ST sin @ydady < 7.
Extra credit: LetG(z) = ff:o g(t)dt. Find a nice formula fotZ’ () in terms of the functions in this problem.
Solution: We use the Fundamental Theorem of Calculus for this problemch states that if is the antiderivative of, a.k.a. if ¥’ = f, then

J, (@) = F(b) — F(a).
Now in our case, we havg(z) = F(z*) — F(0). We then differentiate both side€” (x) = F’(z*) — F'(0). F(0) is just a constant, sB’(0) = 0.
Becausé is the antiderivative of , we havel”’ (z%) = f(2*). SoG’(x) = f(«*)

16. HW #16: DUE WEDNESDAY, APRIL 3, 2013
16.1. Problems: HW #16: Due Wednesday, April 3, 2013.

Page 1011: Question 4: Evaluatefo2 fyl/Q(x + y)dzdy.
Page 1012: Question 11: Evaluate/, foza exp(y/z)dydz.

Additional Problem: Let f(x) = 2® — 42 + cos(22?) + sin(z + 1701). Find a finiteB such that f'(x)| < B for all x in [2,3].
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16.2. Solutions: HW #16: Due Wednesday, April 3, 2013.

Page 1011: Question 4: Evaluatefo2 fyl/z(x + y)dzdy.
Solution: We start by integrating the inside first with respect:tavhich gives us

2 rl 2 2 1
// (z+y)dzdy = /{——ny] dy
0 Jy/2 0 2 z=y/2
2 1 T
- — | =+=||d
LG - ()]
2 2
1 5y
— ——|d
[ G- )a

2 372
5
{hy__i]

22+,

5 4
= 142—= = —.
+ 3 3
Remember that to do multiple integrals, do them one at a tireating the variables we aren’t integrating as constdmntou are not sure whether

your integral is correct, you can always take the derivadive check whether it equals the original integrand.
Page 1012: Question 11: Evaluatef01 fozg exp(y/x)dydz.

Solution: We start by integrating the inside first with respecytas we havelydz and notdzdy. Note that the integral afxp(y/x) with respect
toyiszexp(y/x), as can be verified by taking the derivative with respeet td/e thus find

[ vt = [ woporw

/1 (xe”"”2 - xeo) dz
0

— /1 (zexp(z®) — ) dx
- -3

Il
VR
N —

®

.

|
N
N~

|
RS
N —

®

S

|

[en)
—

|

@
o |
[N

For help on the integrajo1 ze®” dz, use the u-substitution technique. ket 22, sodu = 2zdz andexp(z?) = exp(u).

Additional Problem: Let f(z) = 2® — 42 4 cos(2z®) + sin(x + 1701). Find a finiteB such that f'(z)| < B for all z in [2,3].
Solution: Differentiating f with the normal differentiation rules gives

f/(x) = 32% — 8z — 62° sin(22”) + cos(z + 1701)

Now we'll find anupperbound for the absolute maximum §f(z). We constantly use the absolute value of a sum/differeniesssthan or equal to
the sum of the absolute values of the pieces. We also use tkienoma of the absolute value of a product is at most the prodiidie maximums.

If ()] = !3:62 — 8z — 62”sin(22”) + cos(x + 1701)|
< [32%| 4 |8x| + 627 - | sin(22®)| + | cos(z + 1701)
= 3|2°| + 8|x| + 6]2%| - | sin(22®)| + | cos(x + 1701)]
< 33°)[+8(3)+6(3)% 141 = 27+24+54+1 = 106.

We may take any3 greater than 106. Note the maximum of the absolute valuenefai cosine is 1, which helps in the arguments above.

17. HW #17: DUE FRIDAY, APRIL 5, 2013
17.1. Problems: HW #17: DueFriday, April 5, 2013.

Page 1011: #13: Evaluate the iterated integral

3 ry
/ / \Vy? + 16 dx dy.
o Jo

Page 1011: #25: Sketch the region of integration for the integral

2 4
/ / :02y dy dx.
—2Jz2
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Reverse the order of integration and evaluate the integral.

Page 1011: #30: Sketch the region of integration for the integral

1ol
/ / exp(—z?) dz dy.
0 Jy

Reverse the order of integration and evaluate the integral.
Additional Problem: Give an example of a region in the plane that is neither batelly simple nor vertically simple.

Page 1018: #13: Find the volume of the solid that lies below the surface: f(z,y) = y + ¢ and above the region in they-plane bounded by
the givencurves: =0,z =1,y =0,y = 2.

Page 1018: #42: Find the volume of the solid bounded by the two paraboleids 2> + 2y? andz = 12 — 222 — 32,

Page 1026; #13: Evaluate the given integral by first converting to polar clieates:

1 V1-y2 1
o Jo 1+z2+y
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17.2. Solutions: HW #17: Due Due Friday, April 5, 2013.

Page 1011: #13: Evaluate the iterated integral

3 ry
/ / Vy? + 16 dx dy.
o Jo

Solution: Let’s first make sure we know what region we're integratingrowVe see thag ranges from 0 to 3, and that for a given valueyof:
ranges from O tg. Therefore we're integrating over a triangle in thg-plane with vertices a0, 0), (0, 3) and(3, 3). The interior integral is easy
to evaluate becausgy? + 16 is constant as a function af Therefore

Y P
/ V? + 16 dz = a\/9% + 16‘(? = /52 + 16.
0

We now need to integratg,/y2 + 16 from 0 to 3. It isn’t immediately apparent what that integglalthough making the substitutian= 3>
makes things a lot clearer, sinde = 2ydy:

3 9
1 1 3219 12 4 1
/ yVy? + 16 dy = 5/ Va+ 16 du = §(u+16)3/2‘ - ?5 _ o4 _ oL
0 0 0
Notice that this problem would have been much harder to deeifad tried to integrate with respectidirst, since we would not have had the
additionaly term that allowed us to make an easy substitution. In that weeswould have had to find the integral nyQ + 16 with respect tay,
which is (not obviously)y+/y2 + 16/2 + 8sinh~*(y/4). Remember that switching the order of integration can sionest make your life a lot
easierlNOTE: We could also da = 32 + 16.

Page 1011: #25: Sketch the region of integration for the integral

2 4
/ / :r2y dy dx.
—2 Jz2

Reverse the order of integration and evaluate the integral.
Solution: Notice thatz ranges from—2 to 2. For a fixed value ofz, y ranges fromz? to 4. Notice that when: = +2, y = 4. Therefore the
boundary of the region of integration is defined by the cunyes 4 andy = z>. To reverse the order of integration, we need to consides a

FIGURE 2. Region for Problem #25.

function ofy. First notice that the minimum value gfis 0, and the maximum value gfis 4. For a fixed value of, what values does take? Since
the bottom curve of our region of integration is givengpy= «2, we haver = +./y. Thus for a given value of, = ranges from-,/y to \/y. Our

new integral is given by:
2 rd ) 4 VY 5
zy dy dx = x y dz dy.
—2Jz2 0 —Y

NG 301V 945/
/ x2ydx:ﬁ(y 2y

We see the inner integral evaluates to

)

giving our double integral as

Page 1011: #30: Sketch the region of integration for the integral
1 1
/ / exp(—z?) dz dy.
0 Jy
Reverse the order of integration and evaluate the integral.

Solution: Notice thaty ranges from 0 to 1, and that for a given valueyofc ranges fromy to 1. Therefore our region of integration is a triangle
with vertices(0, 0), (1,0), and(1, 1). To reverse the order of integration, notice that the mimmwalue ofz is 0 and the maximum value afis 1.
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FIGURE 3. Region for Problem #30.

FIGURE 4. Region for Additional Problem.

For a given value of, y ranges fron to x. Therefore our integral can be written as

11 1
/ / exp(—x?) dz dy = / / exp(—z?) dy dz.
0o Jy o Jo

To evaluate this integral, notice that the interior intégga

T

/ exp(—:cz) dy = yexp(—:cz) = :cexp(—:cz)7
0 0

so our double integral is given by
1
/ zexp(—z?) dz.
0

Again, this might not be immediately obvious, but letting= 2, we seelu = 2zdx or zdx = %du, so our integral simplifies to

1 1 1
/0 zexp(—2?) dx = %/o exp(—u) du = —%exp(—u)‘o = % (1 — é) .

As we saw in Problem 13, this integral is significantly easiegvaluate after we changed the order of integration. Witewitching the order, we
would have had to integratecp(—x?) with respect ta, which has no elementary antiderivative!

Additional Problem: Give an example of a region in the plane that is neither botelly simple nor vertically simple.

Solution: Recall what it means for a region to be horizontally or veiticsimple. A region is horizontally simply if we can expsethe range of:
values for a givery as allz such thay: (y) < = < g2(y), whereg: andg- are two continuous functions wiih (v) < g2(y). Intuitively, a region
is horizontally simple if any horizontal line intersectettegion at most twice. Similarly, a region is vertically gimif any vertical line intersects
the region at most twice.

One way to construct a region which is neither horizontaitigde nor vertically simple is to insert a hole into a regiohigh is horizontally
and vertically simple. For example, consider the annulukéncy plane with inner radius 1 and outer radius 2 (that is, theectithn of all points
between 1 and 2 units away from the origin). This region isueotically simple, since the vertical line = 0 intersects the annulus in 4 places.
This region is also not horizontally simple, since the homizl liney = 0 intersects the annulus in 4 places as well. Thus by takingeneigion
(the circle of radius 2) and inserting a hole, we have madgiamevhich is neither horizontally simple nor verticallyrgle.

Page 1018: #13: Find the volume of the solid that lies below the surface: f(z,y) = y + e and above the region in they-plane bounded by
the givencurves: =0,z =1,y =0,y = 2.

Solution: Note the region in they-plane is the rectangl@, 1] x [0,2], 0r0 < z < 1and0 < y < 2. The heightiss = f(z,y) = y + ¢” (which
is always above they-axis. Thus the volume is equal fglzo ffzo(y + e”)dydz; we could have done the-integral first since the region is both
horizontally and vertically simple. Thg-integral gives%y2 + ye®, which we must evaluate at 0 and 2. We thus find the volume squal

1 2 1 y2 2
/ / (y + €*) dydx / {— + yez] dx
=0 J y=0 =0 2 y=0

1
= / (2 + 2¢")dx
z=0

1

[2:0 + 261]
x=0

242e—2 = 2e
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Page 1018: #42: Find the volume of the solid bounded by the two paraboleids 2> + 2y? andz = 12 — 222 — 32,

Solution: We first solve for the intersection of the two paraboloidsteNibe first is the bottom and the second is the top. Settingnbequal, we
find z = % + 2y = 12 — 222 — 3%, Doing some algebra givels:> + 3y> = 12, orz> + > = 4. Note this is the equation of a circle of radius
2; unlike the problems in class the height is not constare.h€he distance between the top and the bottom curves @t,am is ztop — Zbottom,
whichis12 — 222 — y? — (2% — %) = 12 — 32 — 3y>. We have

1 V1-z?
/ / (12 — 32° — 3y )dydz.
z=—1Jy=—/1—22

We convert this to polar coordinates. Lz, y) = 12 — 3z — 3y2. We are integrating over the unit disk, which is easily coteeto a rectangle
in polar coordinates. We hay&r cos 6, rsin §) = 12 — 32, and thus the volume is

/ / (12 — 3r°)rdrd.
0=

We useu-substitution. Let, = 12 — 3r% sodu = —6rdr or rdr = (—1/6)du. We replace: : 0 — 2 with w : 12 — 0, and thus the volume is

27 2
/ / —1/6)ududd = —1/ L
0 6 Jo—o 2

_ 27
1-144 a0
6 2 Jooo

27
= 12/ df = 1227 = 24m.
0=0

0

12

If you do not want to convert to polar, you can follow the himtthe book for problems 39 to 45, which says to consult thestablntegrals in the
back of the book for the anti-derivativfe ¢i> — 22)*/2, and use that to finish solving the problem.

If you've read this far, however, you have forgotten the \v&ge advice of the Patron Saint of Mathematics, Henry Dakimt&au, who advises
us all to ‘Simplify, simplify Instead of trying to use-substitution, let's just multiply things out! Thei2 — 3r2)r becomed 2r — 31, which can
be integrated directly! Thus the solution to this probleral&o

/ / (12r — 3r*)drdf
0= r=0

/ / (12 — 3r%)rdrdo
o=
-] o
6=0 2 4 r=0

27
/ (24 — 12) do
6

=0

27
12 / do
0=0

= 12-27 = 24m,

not surprisingly the same answer as before.

Page 1026; #13: Evaluate the given integral by first converting to polar ciioates:

// 1+:c2+ 2d:cdy

Solution: We notice that the region is the first-quadrant part the unilee ThusO < » < 1 and0 < 6 < w/2. The function isf(z,y) =
1/(1 4 2% +y?),s0f(rcosf,rsinf) = 1/(1 + 7’2). We thus have the integral equals

/2 1 /2 )
/ / —— rdrd) = —/ (1 + r?))i_odd
0 T 2 6=0
1 /2
= —/ [In2—1In1]de
2 Jo=o
/2
_ w2 P w2 w2
2 Jo—o 2 2 4

The key step was a-substitution. We had to |n’[egra3fe1 o 11“ If we takeu = 1+ r?, du = 2rdr sordr = (1/2)du, r : — — 1 becomes

= In2.

2
u: 1 — 2, and thus the-integral becomeg‘u:1 duf/u = Inu

u=1



SOLUTION KEYS FOR MATH 105 HW (SPRING 2013) 33

18. HW #18: DUE MONDAY, APRIL 8, 2013
18.1. Problems: HW #18: Due Monday, April 8, 2013.

Find ;:O my:,y z%y8dzdy.

Page 1026: Question 4: Evaluatef:/r‘;4 f02 0820 1 drdp.

Additional Question 1. Evaluate fol ffy sin(zy) - exp(z?y?)dedy. Hint: in what way is this similar to the first problem on this hmework
assignment?

Additional Question 2: Let f(x,y, z) = cos(zy + 22). Find Df(z, y, 2).

Additional Question 3: Find the maximum value of f(x,y) = xy given that g(z,y) = x> + 4y* = 1.
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18.2. Solutions: HW #18: Due Monday, April 8, 2013.

Find f;:O f;’:7y xz2y8dxdy.
Solution: We start by integrating with respecttg so we have:

/l /y Pdndy = L[ e ay
y=0Jx=—y 10 y=0 =
e (v —y')dy
10/,
- 0

Note we are integrating an odd function about a symmetrarval, and thus we do get zero.

Page 1026: Question 4: Evaluatefl/r‘;4 20220 1 drdg.
Solution: We start by integrating the inside first with respect tavhich gives us

/4 2 cos 260 /4 7‘2 2 cos 260
/ rdrd0 / {—} do
—7/4J0 —x/a L2 o

/4
/ 2 cos® 20d0
—m/4

/2
/ cos? udu,
—m/2

where we didu-substitution:u = 20, du = 2d0, andf : —7/4 — w/4 meansu : —x/2 — /2. We now use a trig-identity. As

. . 2 .2 2
cos(2u) = cos(u+ u) =cosucosu —sinusinu = cos” u —sin“u = 2cos”u — 1

(where the last followed fromin® u = 1 — cos® u), we see thatos® u = % In the arguments below we’'ll do another substitution; Wetl

v = 2u sodv = 2du andu : —mw /2 — 7/2 will mean thatv : —m/ — 7. Continuing we find

/4 2 cos 260 /2 /2 2 1
/ rdrdf = / cos®udu = / {COS “ + —] du
—7/4J0 —7/2 —7/2 2 2

T /2
= 1/ cosvdv—&—l/ du
4 —7 2 —7/2
T 1 /2
v=—m + 5 [u]uzfﬂ/Q

- J0+3G+D-3

Remember that when usingsubstitution, be sure to change the bounds correctly.
There are other ways to do this problem. We could use the tdbigegrals in the front cover to find the anti-derivativecok? «; to put our
expression in a form where we could do this, we would need ta@substitution first. Thus we have

/4 2 cos 20 /4 /2 /2
/ rdrdf = / 2cos?20d0 = / cos>udu = 2/ cos? udu,
—7/4J0 —7/4 —7/2 0

where we used the-substitutionu = 20, du = 2df, and a¥) : —nw/4 — w/4,u : —7/2 — 7/2. We then noted the integrand was even and the
range symmetric, so we could just integrate fromo 7 /2 and double. Note that

/2 1 27 27 27
2 2 2 .2
/ cos“udu = —/ cos” udu, / cos” udu = / sin” du.
0 4 Jo 0 0

/2 1 27 11 27 2
/ cos> udu = —/ cos® udu = ——/ [coszu + sin® u] du = il}
0 4 /o 42 Jo

ascos® u + sin” u = 1, and so the answer - (27/8) = /2.

= i [sin v]

Thus
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Additional Question 1: Evaluate fol fj’y sin(zy) - exp(x?y?)dedy. Hint: in what way is this similar to the first problem on this hmework
assignment?

Solution: The key to this question is to realize than(xy) is an odd function and thatxp(z2y?) is an even function. Recalf(z) is odd if
f(=z) = —f(x) and even iff(—z) = f(x). The product of an even function and an odd function is an addtfon. Since we are first integrating
over the bound+y, y] we can use the symmetry properties of integrals to simgti€/calculation: the integral of an odd function over a synmine
region is zero, as the positive parts cancel with the negaiirts.

1 y 1
/ / sin(zy) - exp(x2y2)d:cdy = / Ody = 0
0 -y 0

2
For examplejf_% xdx = %‘ = 0. What is very nice is that we do not need to know what the antigiive is; the antiderivative of an odd
- r=—2
function is an even function, and thus the difference is ndren we subtract with symmetric boundary points.

Additional Question 2: Let f(xz,v, z) = cos(zy + 22). Find Df(z, y, 2).
Solution: Since we are calculating the gradient of this function, wepdy need to apply the normal differentiation rules to detieie the partial
derivatives off (z, y, z).

of s 2

U ayz) = —ysin(ay+2)

of o )

a—y(x, Yy, z) = zsin(xy + 2°)

of P 2

52 (z,y,2) = 2zsin(zy + 27)

Df(x,y,z) = (—ysin(zy+ 2°), —zsin(zy + 2°), —2zsin(zy + 2°))

Additional Question 3: Find the maximum value of f(z,y) = zy given that g(z,y) = = + 4y* = 1.
Solution: We will use the method of Lagrange multipliers to calculdie ¢onstrained maximum. Set up the appropriate equatiosstting the
gradients equal to each other with the constarih other words, we must solVé f = AVg andg(z,y) = 1. AsV f = (y,z) andVg = (2z, 8y),
we see we must solve
of _ 99 of _ 99 _
ax(x7y) - ax(xyy)v ay(l”y) - ay(xvy)v g(l’,y) =G
or substituting
y = Az, xz = A8y, z2 —|—4y2 = 1.

Note that ify = 0 thenz = 0, but this does not satisfy the constraint. Similarlyit= 0 theny = 0. Thus neither: nory is zero (and thus

neither is\).

If we take the ratio of the second equation over the first, we fin
T _ My T _ 4y

y A2z Yy x

Cross multiplying gives:® = 4y>. Substituting this into the constrainf 4 4y> = 1 gives4y® + 4y> = 1, s0y®> = 1/8ory = £1/2V2.

As z? = 4y, we see that = 41/+/2. We thus have four candidate points to check for maxima /méni(z, y) = (£1/v/2, £1/2v/2). The
two points where the signs are equal evaluate urfder1/4, while the two points where the signs are oppositeuatalunderf to —1/4; thus the
maximum value id /4.

19. HW #19: DUE WEDNESDAY, APRIL 10, 2013
19.1. Problems: HW #19: Due Wednesday, April 10, 2013.

Page 1056: #37a.: Use spherical coordinates to evaluate the integral

I = ///Bexp(—pg)dv

whereB is the solid ball of radiua centered at the origin.

Page 1056: #37b.: Leta — oo in the result of part (a) to show that
/ / / exp(—(z* +y* + 2°)*?) de dy dz = %ﬂ'.
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19.2. Solutions: HW #19: Due Wednesday, April 10, 2013.

Page 1056: #37a.: Use spherical coordinates to evaluate the integral

e

whereB is the solid ball of radiug centered at the origin.
Solution: We first need to figure out our limits of integration. Recadlttin spherical coordinates we have the ragipshich will range from 0 taz,
the angle in the zy-plane, which ranges between 0 dhd and the azimuthal anglg will ranges from 0 tar. Therefore our limits of integration

are
0=27
/ / / exp(—p”) dV.
p=0 Jo= =

The volume elemeniV is given bydV = p?sin ¢ d¢ df dp (as we have a rectangular box in spherical coordinates ankahnds of integration
are fixed and do not depend on each other, we may integratg iordar). Therefore our integral is given by

=27
/ / / exp(— p sin ¢ d¢ df dp.
0 o=

The inside integrates te exp(—p®)p? cos ¢. Taking the difference at the endpoints we gekp(—p?) p?, and thus

0=27
= 2/ / exp(—p°) p 2do dp.
p= 0=

Since the inside is constant as a functior pihtegrating with respect té has the same effect as multiplying By, giving
p=a
I = 471'/ exp(—p°) p°dp.
p=0
Notice that the integral afxp(—p®) p? with respect tg is just— exp(—p®) /3, S0 our integral evaluates to

I =

4 3“_4_71' _ 3
Texp(—p")|) = S0 —exp(—a’)).

Page 1056: #37h.: Leta — oo in the result of part (a) to show that

/ / / exp(— (22 +y* + 2%)*?) da dy dz = %w.

Solution: Notice that this is the integral @kp(—p*) over all of R®, which is exactly the integral we worked out in part (a) in tingit as a — co.
As a — oo, we see thatxp(—a®) — 0, so our integral does indeed approaety 3.

20. HW #20: DJE FRIDAY, APRIL 12, 2013
20.1. Problems: HW #20: Due Friday, April 12, 2013.
Page 1071: #2: Solve forxz andy in terms ofu andwv, and compute the Jacobi@fz, y)/0(u,v) withu = x — 2y,v = 3z + y.

Page 1071: #3: Solve forz andy in terms ofu andwv, and compute the Jacobi@z, y)/0(u,v) with uw = zy,v = y/z.
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20.2. Solutions: HW #20: Due Friday, April 12, 2013.

Page 1071: #2: Solve forz andy in terms ofu andv, and compute the Jacobi@z, y)/9(u, v) with
u=x—2y v =3 +y.

Solution: We first notice that, + 2v = 7z, sox = z(u,v) = (u + 2v)/7. Similarly,v — 3u = Ty, soy = y(u,v) = (v — 3u)/7. Therefore the
Jacobiard(z, y)/0(u, v) is given by

conl A AR

Page 1071: #3: Solve forz andy in terms ofu andwv, and computer the Jacobi&tz, y)/9(u, v) with
u=xy v=uy/x.
Solution: Notice that multiplyingu andv together yieldsuv = y?, soy = y(u,v) = ++/uv. Similarly, dividingu by v givesu/v = z2, so
x = z(u,v) = £/u/v. Which of the solutions should we take? Notice that we negd= u, so we must either take both positive solutions or
both negative solutions. Taking both positive solutionsfind that the Jacobian is given by

T T 1 —Vu
8($,y):‘% %‘: vyl T S
O(u,v) = 2‘5”% 2\/\/% v dv 2w

The exact same calculation shows that the Jacobian is agéiln) when we take the negative solutions.

21. HW #21: DUE MONDAY, APRIL 15, 2013

Prepare for the midterm Question 1 is to be done at honme and handed in at the start of class on
Wednesday, April 17; you can download it off the course honmepage. Failure to hand it in at the start

of class will result in a zero for that question. You may not use any material to do the first problem
(i.e., it is closed book, closed notes, no calculator, no book, ...). Question 1 is up to and including
material from Chapters 11 and 12; no integration will be on Question 1, and thus this is on materi al

you have nastered | ong ago.

21.1. Problems: HW #21: Due Monday, April 15, 2013.

Problem 1:. Give an example of a sequenge, }72; that diverges.

Problem 2:. Give an example of a sequence of distinct teamsuch that the sequende., } 7=, converges.

Problem 3:. Give an example of a sequence of distinct tetmsuch thaja, | < 2013 and the sequenc, };2; does not converge.
Problem 10-4 (Cain-Herod): Find the limit of the sequenae, = 3/n2, or explain why it does not converge.

i i imi 24 2n—
Problem 10-5 (Cain-Herod): Find the limit of the sequence, = 3%+2n—7 jlg 7.



38 STEVEN J. MILLER

21.2. Solutions: HW #21: Due Monday, April 15, 2013.

Problem 1:. Give an example of a sequenge, };2, that diverges.

Solution: There are two ways for a sequence not to converge. It carr gighéoo big (diverge to infinity), or it can bounce aroundefger and never
settle down. For instance, the sequence given,pby= n for all n € N will diverge to infinity, since given any real numbere R, a,, > r for all
n > r. A sequence that fails to converge because it bounags is (—1)", or more interestingly., = (—1)" + (—=1)"/n.

Problem 2:. Give an example of a sequence of distinct tetmsuch that the sequenge,, } 7>, converges.

Solution: For a sequence to converge to a lihjtit must eventually get and stay arbitrarily closetoConsider the sequenag = 1/n. We claim
this converges to 0. To prove this, we need to show that gimgre a> 0, we can find anV such thata, — 0| < eforalln > N. Let N be any
integer exceeding/e. Then forn > N, a, < €/2, s0la, — 0] < €/2 < ¢, S0a, does indeed converge to 0. Arguing more informally, we would
saylim,— oo |an — 0| = lim,— oo 1/n, @and this limit is zero, thus proving that 0 is indeed the fiafithe sequence. For a more interesting example,
consider the sequeneg = 3 + 1/n, which converges to 3.

Problem 3:. Give an example of a sequence of distinct tetmsuch thaja, | < 2013 and the sequencig:, },,~; does not converge.
Solution: Here we are looking for a bounded sequence that does notrgenvBince the sequence cannot diverge to infinity, it musticoally

bounce around. Consider the sequence
2 1 6 1 8
nzo: - 17 o) 90 g R e ]
{an}n=s { 33 7709 }

where the odd terms are given by,1 = 1/(2k + 1), and the even terms are given &y, = 2k/(2k + 1). Notice that this sequence is bounded
since every term is less than or equal to 1, and cannot combertause the odd terms converge to O while the even termergeno 1.

Problem 10-4 (Cain-Herod): Find the limit of the sequenae, = 3/n?, or explain why it does not converge.

Solution: We can use the limit of a quotient is the quotient of the lirsitize limit of the denominator is not zero and we do not havexc. We see
that the numerator is alwayswhile the denominator increases and approaches infinitys e know thatim,, - 3/n? = 0.

41
55

Problem 10-5 (Cain-Herod): Find the limit of the sequence, = %
Solution: We cannot use the limit of a quotient is the quotient of thdatBras we havex/oo. One approach is to use L'Hopital's rule and take
derivatives of the numerator and the denominator. We have

2 —
fim 2A2T gy, 2 O ms =
n— 00 n n— 00 2n n—»00 n— 00
Another approach is to pull out the highest powernah the numerator and denominator:
2 42n— 2 2/n — 7/n? 2/n — 7/n? 2
i ST @2 TnT) g 3d 2T (g 20 T L)
n— oo ’rL2 n— oo ’rL2 . 1 n— oo 1 n— oo n ’rL2

The analysis is easier than some of the other problems aetiwninator was just to a power.
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22. HW #22: DUE WEDNESDAY, APRIL 24, 2013
22.1. Problems: HW #22: Due Wednesday, April 24, 2013.

Problem 10-8 (Cain-Herod): Find the limit of the seried">° | -

3n”

Problem 10-10 (Cain-Herod): Find a value of: that will insure thatl + 1/2 4+ 1/3 + --- + 1/n > 10°. Prove your value works.

Page 10-8 (Cain-Herod): Question 14: Determine if the serie§_ .7 m converges or diverges.
Page 10-8 (Cain-Herod): Question 15: Determine if the seriey "~ ﬁ converges or diverges.

Additional question: Let f(z) = cos x, and compute the first eight derivativesfifr) atz = 0, and determine the™ derivative.

39
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22.2. Solutions: HW #22: Due Wednesday, April 24, 2013.

Problem 10-8 (Cain-Herod): Find the limit of the serie$ "> | .

Solution: This is the same as finding the sum of the infinite geometricesecgl + 1/3 + (1/3)% + (1/3)® + - - - and then subtracting off 1, as
we want to start the sum at= 1 and notn = 0. We can use the formula that the sum of infinite geometric eslecgl with ratia- starting atn = 0

is 7=, provided of course that| < 1. For usr = 1/3, and thus the sum, starting from= 0, is1/(1 — 3) = 1/(2/3) = 3/2; however, we

want the sum to start with the = 1 term and not the. = 0 term, so we must subtract the= 0 term, which is 1. Thus the answerdg2—1 = 1/2.

Problem 10-10: Find a value of. that will insure thatl + 1/2 + 1/3 4 --- 4+ 1/n > 10°. Prove your value works.
Solution: By a result proved in class today, we know that /oilarge

|
nz::lﬁ ~ InN.

So we must solvén N = 10; the solution isN' = exp(10°), which is aboud.8 - 10131294,

It is possible to solve this without using the asymptoti@tiein for the sum. We showed in class that if we group the tarfisand1/4 we get
at leastl /2, and if we group terms/5,1/6,1/7,1/8 we get at least /2, and so on. If we go up to the term= 2* we have at least 1/2 two times,
if we go up ton = 2° we have 1/2 at least 3 times, and in general if we go up"tthen we have 1/2 at leakttimes. If we want to have the sum at
least10®, we just need to také = 2 - 10°, which means: = 2>°° = 41%° which is approximatelg.0 - 10°°2°%9 . Note how much larger this is
than the answer we get from using the sum of the firderms is abouin N.

Page 10-8: Question 14: Determine if the serie3_ .~ m converges or diverges.

Solution: We will use the comparison test to determine if this serieseres or diverges. The serigg” m is less than the serigs )~ ﬁ
which is less than the convergent sef}€$: ei,c =332, (1/e)". This last series is a geometric series with ratie 1/e, as|r| < 1, the geometric
series converges. Thus, by the comparison test, the orggig@ence converges beca$§§€1+—k| < é

Page 10-8: Question 15: Determine if the serie3 ;- ﬁ converges or diverges.

Solution: We will use the comparison test to determine if this seriewemes or diverges. We want to compare this to a multiplé@harmonic
series; we know the harmonic series diverges, and multiglgach term by a constant won’t change if it converges orgése We havek > 2k+1
forall k > 1. This impliesszi > 7 = 1 2. Thus our series is greater, term by term, than the harmeniess(multiplied by 1/4). As the harmonic
series diverges, so too does our series.

Page 10-8: Question 16: Determine if the serie3_ ;- , @ converges or diverges.

Solution: We will use the comparison test to determine if this series/emes or diverges. The growth of a log function is slowanth linear
function: log k < k; taking the reciprocal reverses the relation%%q; > % Thus our series is greater, term by term, than the harmeniess As
the harmonic series diverges, so too does our series.

Additional question: Let f(z) = cos x, and compute the first eight derivativesfifr) atz = 0, and determine the'™ derivative.
Solution: We will begin by computing the first eight derivatives.

f () —sinz
f'(zr) = —cosx
f(x) = sinx

) = cosw

fz) = —sinz

) = —cosx
fU(z) = sinz
U2 = cosw.

Now compute the derivatives #t0).

f(0) = —sin0=0, f’(0)=—cos0=—1
F70) = sin0=0, f(0)=cos0=1
F0) = —sin0=0, f“70)=—cos0=—-1
F0) = sin0=0, f7(0) =cos0=1.

We see the pattern: 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1 and sopercifically, the even derivatives vanish, and {fc) = cos z then f(4#+1) (0)=-1
while f4*+3)(0) = 1.



SOLUTION KEYS FOR MATH 105 HW (SPRING 2013) 41

23. HW #23: DJE FRIDAY, APRIL 26, 2013
23.1. Problems: HW #23: Due Friday, April 26, 2013.

Problem Cain-Herod 10-18: Is the serie$ ", _ 1,8—:“ convergent or divergent? Prove your answer.
Problem Cain-Herod 10-21: Is the following series convergent or divergent (and of seysrove your answer)?

iigk
k(4
Lo BR (kT K +1)

Problem 3: Leta,, = —— (one divided by» times the natural log af). Prove that this series divergésint: what is the derivative of the natural

nlnn

log of z? Useu-substitution.

Problem 4: Leta,, = ml% (one divided by n times the square of the natural log)ofProve that this series divergdsint: use the same method
as the previous problem.

Problem 5: Give an example of a sequence or series that you have seeothreanlass, in something you've read, in something youh&eoved in
the world, ....
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23.2. Solutions: HW #23: Due Friday, April 26, 2013.

Problem 10-18: Is the series(ZZ:O f—,’c) convergent or divergent?
Solution: We use the ratio test:

— im |20

= Jim (k1)

k—oo

b= Jim,

so the series converges as the ratis less than 1.

‘ 10k+1

Ak+41
ag

k!
‘W

'=0<L

Problem 10-21: Is the following series convergent or divergent?

n

E:———g———
k(.4
£ Rk K+ 1)

Solution: We use the Comparison Test:

Y Ly 1Ly
5) (K*+k+1) (ki 4+ k+1) k1

n
k=1 k=1 k=1

which converges (it is a-series withp = 4), and thus the original series also converges. Alternigtivee havea, < (3/5)%, and we obtain
convergence by comparing with a geometric series with gtio

Problem 3: Leta, = Tim) (one divided byn times the natural log ofl). Prove that this series divergellint: what is the derivative of the
natural log ofz? Useu-substitution.

Solution: We use the integral test. We start the series with 2 asln 1 = 0 and we cannot divide by zero. Sgtr) = —1—; note f(n) = a.

zlnax’

The convergence / divergence of the series is equivalehetodnvergence or divergence of the integ@ ﬁd:c Through substitution by parts,
we haveu = Inz, du = % andz : 2 — oo becomes: : In2 — oo. Then

/ L@:/ ldu:[lnu]f::z.
5, Inz z no U

As this clearly diverges, the original series diverges aé we

Problem 4: Leta,, = m (one divided by n times the square of the natural log)ofProve that this series divergesint: use the same method

as the previous problem.

Solution: We integratef2oo —L1__dx, where we cannot have = 1 (see previous problem). Throughsubstitution, we have = Inz, du = df‘,

z1ln2
andzx : 2 — oo becomes: : In2 — oco. Then
1 dx <1 11 1
s In“z Ino U Ul,, In2
As this converges, the original series converges as well.
Problem 5: Give an example of a sequence or series that you have seeothreanlass, in something you've read, in something youh&eoved in
the world, ....

24. HW #24:. DJE MONDAY, APRIL 29, 2013
24.1. Problems: HW #24: Due Monday, April 29, 2013.

32k+1

Cain-Herod: Question 20: Does the seriey - , =gr— converge or diverge?

Additional Question 1: Compute the first five terms of the Taylor series expansiom@f — ) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.

Additional Question 2: Compute the first five terms of the Taylor series expansiom@f + ) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.

Additional Question 3: Give an example of a sequence or series you like.
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24.2. Solutions: HW #24: Due Monday, April 29, 2013.

Cain-Herod: Question 20: Does the seriey - , 3?;:1 converge or diverge?

Solution: We will use the ratio test. Take the limit 6#;:—1 (we don't need absolute values as everything is positive).

- api1 32(k+1)+1 10% B 32k+3 _i_g
koo ap 10kt 32kl 10. 321 10 10
Since the limit is less than 1, this series converges by tie tesst. Alternatively, note this is the same as
o0 32k+1 o 32k o 9k o i
=3 — =3 — =3 9/10)";

as this is a geometric series with ratio less than 1, it cgyeger

Additional Question 1: Compute the first five terms of the Taylor series expansiom@f — ) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.

Solution: The Taylor series expansion formula is givenfés) + fll(!“) (x —a)+ L(f'”)(gz: —a)*+ %(x —a)® 4 ... . We will begin by taking
the first four derivatives of () = In(1 — z).

f@) = = @ g 1@ = g @)= e
Now by substituting: = 0 into the derivatives, we can find the expansion of the first®sdan the Taylor series.
s = f(0)+ @(z —-0)+ %(z —0)> + @(z —0)° + %(z —0)*
= In(1)+ _1—!1(:c) + _2—!1(232) + ;—!Q(rs) + ;—!6(1?4)
2 3 4

Hence the expansion of the first five terms of the Taylor serfda(1 — z) atez = 0is0 — =z — 2 2 % It seems like the terms are all

2 3
negative and the coefficient of' is 1/n; this is correct and we have -,

—z™

"

Additional Question 2: Compute the first five terms of the Taylor series expansiom@f + ) (the natural logarithm of x) about = 0, and
conjecture the answer for the full Taylor series.
Solution: The Taylor series expansion of tHig(x + 1) is very similar to the previous question. The only changetfeesigns of the derivatives of
In(xz + 1). The four derivatives are listed below.

1 -1 2

fx) = Tra f’l(m):m fm(m):m " (x) =

6
o)

We can solve this by replacingwith —z in the previous problem, and are ledX9,?_, ey tian

Additional Question 3: Give an example of a sequence or series you like.
Solution: So many to choose from. Here's one: 1, 4, 6, 8, 9, 14, 27. Andsh@3, 12, 15, 16, 18, 04, 07. For something a bit more mattieaia
1,1,00,10,0,1,0,0,0,0,2,2,2,2,12,1,0,1,1,0.

25. HW #25: DJE FRIDAY, MAY 3, 2013
25.1. Problems: HW #25: Due Friday, May 3, 2013.

Question 1: Find the second order Taylor series expansiotosfzy) about(0, 0).

Question 2: Find the second order Taylor Series expansiotsf./z + y) about(0, 0).

Question 3: Find the second order Taylor series expansiocos{z®y*) about(0, 0).

Problem Extra Credit 1:: Give a product of infinitely many distinct, positive termshluhat the product converges to a numbeiith 0 < ¢ < oo.

Problem Extra Credit 2:: Let {an };2; be a sequence of positive numbers such}igt_, 1/a, converges. LeB,, = 1/n ) ;_, ax. Prove that
-, 1/Bn converges.
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25.2. Solutions: HW #25: Due Friday, May 3, 2013.

Question 1: Find the second order Taylor series expansioaosfzy) about(0, 0).
Solution: Using the trick we discussed in class, let's get xy, and then expandos(u) using the univariate Taylor series. We have

2

cos(u)zl—%+~~

Substitutingu = xy we findcos(zy) ~ 1 — (zy)?/2! = 1 —2%y? /2. However, this is actually a fourth order expansion bec#luseegree of:?y>
is 4. Therefore the second order Taylor series expansions¢iy) is just1.

Question 2: Find the second order Taylor Series expansiotost\/z + y) about(0, 0).
Solution: We again use the trick of letting = /= + y and expandingos(u) ~ 1 — u?/2! + u* /4! — u®/6! 4 - - .. Substitutingu = /= + y we
find

2 4 6 2 2 3 2 2 3
cos(M)zl—(\/xﬂ’) JWeERY) ety rty  at2eydy” 2 A daTydSey 4yt

2 24 720 2 24 720
Keeping just the second order terms yields

Note that we got a little bit lucky here. Since cosine is ameumction its Taylor series consist of only even exponeBiscause of this we were
able to cancel out the presence of the square root and getienkeg Taylor series. Had we tried to do this wifln (/= + y) we would have been
out of luck, since the first term would have beg + y.

Question 3: Find the second order Taylor series expansiotosfz®y*) about(0, 0).

Solution: As before, set: = z%y*. Then we haveos(u) = 1 — u?/2 + -+ = 1 — 2%®/2 + - - .. After the constant term 1, the next term has
degree 14. Thus, as we saw with the first problem, the secatet @aylor series expansion afs(z>y*) about(0, 0) is just 1. While this may
seem like a poor approximation, notice that when the absaifit andy are both less than 1*y* is very small, so we are evaluatings(z) near

x = 0, which of course is 1.

Problem Extra Credit 1:: Give a product of infinitely many distinct, positive termsbuhat the product converges to a numbeiith 0 < ¢ < co.
Solution: When doing problems with infinite products, it is sometimasier to pick the number you want to converge to, and thenem@a
appropriate sequence that will converge to that numbermp@&ewe wanted = 1. What is a nice function that convergeslt® One that comes to
mind is(n + 1) /n. Can we create a sequenge, },=; such that the product of the firgtterms is(k + 1)/k? If that were to happen, we would

need
k+1  k+2
L Ok+1 = k—_H7
giving a1 = k(k-+2)/(k+41)%. Let's make sure this sequence works. Take= (n—1)(n+1)/n?. First notice that:; = 0, which is a problem
because that would make our product zero. So let’s justiset 2 (because we want; = (1 4 1)/1 = 2), and takez,, = (n + 1)(n — 1)/n? for

n > 2. We prove by induction that

n=1
and taking the limit asn — oo gives us that the product converges to 1. Notice that theeabquation holds for the base case= 2, since
2.1-3/2% =3/2 = (2 + 1)/2. Assuming that it holds for somie> 2, we show that it holds fok + 1. We have
k+1 k

[ = [[o Ck(k+2k+1 k42
R S 7S R S N &

which is what we wanted to show. Therefore the product caaseto 1.THISISA TELESCOPING PRODUCT!

Problem Extra Credit 2:: Let {an };=; be a sequence of positive numbers such¥igt , 1/a, converges. LeB,, = 1/n)_,_, ax. Prove that
> o2, 1/Bn converges.

Solution: It is sufficient to consider increasing sequences, sind®ifi,'s are not increasing, rearranging them into increasingondll make B,,
smaller, meanind /B, is larger. Therefore if the sum af/ B,, converges for all increasing sequenges }, then it will for all sequences. Suppose
that{a,} is an increasing sequence. We have

1 1
—(anjp+--Fan) < By < =(ar+---+an)
n n

1 1

_Ean/Q < B, < —Nan,

n 2 n

implying $n,,/2 < Bn < a,. In particular,1/B,, < 2/a,, />, and hence by the comparison t83f” , 1/B,, is finite. This is a very hard application
of the comparison test!
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