- 1. (20 points) Let  $\overrightarrow{P}=(1,0,-1), \overrightarrow{Q}=(1,1,1)$  and  $\overrightarrow{R}=(1,-2,1).$ 
  - 1. Find the cosine of the angle between  $\overrightarrow{P}$  and  $\overrightarrow{Q}$ .
  - 2. Find the equation of the plane containing  $\overrightarrow{P}$ ,  $\overrightarrow{Q}$  and  $\overrightarrow{R}$ .
  - 3. Compute the following quantities if possible; if not possible, state why not:
    - $\diamond$  (i)  $(\overrightarrow{P} \times \overrightarrow{Q}) \times \overrightarrow{R}$ ;
    - $\diamond \text{ (ii) } (\overrightarrow{P} \times \overrightarrow{Q}) \cdot \overrightarrow{R};$
    - $\diamond$  (iii)  $(\overrightarrow{P} \cdot \overrightarrow{Q}) \times \overrightarrow{R}$ .
  - 4. Let  $f(x, y, z) = \sin(xyz)$ . Find the directional derivative of f(x, y, z) at the point  $\overrightarrow{P}$  in the direction  $\overrightarrow{Q}$ .
  - 5. Let  $f(u,v)=u^2+v^2$ ,  $g(x,y,z)=(\sin(xy)+z,e^x+yz)$  and set h(x,y,z)=f(g(x,y,z)). Using the Chain Rule, compute  $\frac{\partial h}{\partial x}$ ,  $\frac{\partial h}{\partial y}$  and  $\frac{\partial h}{\partial z}$  at the point (0,0,0).