- 1. (20 points) Let $\overrightarrow{P}=(1,0,-1), \overrightarrow{Q}=(1,1,1)$ and $\overrightarrow{R}=(1,-2,1).$ - 1. Find the cosine of the angle between \overrightarrow{P} and \overrightarrow{Q} . - 2. Find the equation of the plane containing \overrightarrow{P} , \overrightarrow{Q} and \overrightarrow{R} . - 3. Compute the following quantities if possible; if not possible, state why not: - \diamond (i) $(\overrightarrow{P} \times \overrightarrow{Q}) \times \overrightarrow{R}$; - $\diamond \text{ (ii) } (\overrightarrow{P} \times \overrightarrow{Q}) \cdot \overrightarrow{R};$ - \diamond (iii) $(\overrightarrow{P} \cdot \overrightarrow{Q}) \times \overrightarrow{R}$. - 4. Let $f(x, y, z) = \sin(xyz)$. Find the directional derivative of f(x, y, z) at the point \overrightarrow{P} in the direction \overrightarrow{Q} . - 5. Let $f(u,v)=u^2+v^2$, $g(x,y,z)=(\sin(xy)+z,e^x+yz)$ and set h(x,y,z)=f(g(x,y,z)). Using the Chain Rule, compute $\frac{\partial h}{\partial x}$, $\frac{\partial h}{\partial y}$ and $\frac{\partial h}{\partial z}$ at the point (0,0,0).