MATH 105 SOLUTION KEYS

MURAT KOLOGLU

Homework 5

Section 2.1.

Exercise (1). Sketch the level curves and graphs of the following functions:
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x-y+2$. The level set of value c is the set of all x and y such that $f(x, y)=c$. For this function, this means that $x-y+2=c$, which we may rewrite as $y=x+2-c$. This is the equation of a line with slope -1 and y-intercept $2-c$. We plot some level sets in Figure 1, and graph of the function in Figure 2.

Date: March 7, 2010.

Figure 1. Level curves of $f(x, y)=x-y+2$.

Figure 2. Plot of $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}-\mathrm{y}+2$.
(c) $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto-x y$. Once again, the level set of value c is the set of all x and y such that $f(x, y)=c$. For this function this means that $-x y=c$, which we may write as $y=-\frac{c}{x}$. For $c=0$ we have $x=0$ or $y=0$, which means the level curve of $c=0$ is the x - and y-axes. For $c \neq 0$ this is a collection of curves that go to 0 as the function approaches $\pm \infty$ and go to ∞ and $-\infty$ as the function approaches 0 from the right and the left. We plot some level sets in Figure 3.

The function itself resembles a saddle. For $c>0$, the function has negative values in the first and third quadrants of the $x y$ plane. Conversely, for $c<0$, the function has positive values in the second and fourth quadrants of the $x y$ plane. We plot the graph of the function in Figure 4.

Exercise (24). Sketch or describe the surfaces in \mathbb{R}^{3} of the equations presented:

$$
\frac{y^{2}}{9}+\frac{z^{2}}{4}=1+\frac{x^{2}}{16}
$$

The best way to start graphing a surface is to make certain critical observations. For example, when $z=0$, the function is living in the $x y$ plane.

Figure 3. Level curves of $f(x, y)=-x y$.

Figure 4. Plot of $f(x, y)=-x y$.
For $z=0$ the equation takes the form

$$
\begin{array}{rc}
\frac{y^{2}}{9} & =1+\frac{x^{2}}{16} \\
y= & \pm 3 \sqrt{1+\frac{x^{2}}{16}}
\end{array}
$$

which describes two hyperbolas. These hyperbolas are distinctly visible in Figure 6. If we were to let $z=c$ and think of this as a question of level sets

Figure 5. The surface $\frac{y^{2}}{9}+\frac{z^{2}}{4}=1+\frac{x^{2}}{16}$.
we would have

$$
y= \pm 3 \sqrt{1+\frac{x^{2}}{16}-\frac{c^{2}}{4}}
$$

which still describes hyperbolas, that get less 'curvier' and come closer to the $x z$ plane as $|c|$ gets larger than 0 .

Now that we have the $x y$ plane handled, let's repeat the process for the $x z$ and $y z$ planes. When $y=0$ we are in the $x z$ plane with the equation

$$
z= \pm 2 \sqrt{1+\frac{x^{2}}{16}}
$$

Once again this describes two hyperbolas. By now we have the skeleton of our surface, it is between four hyperbolas, all extending along the x direction. To fill in the rest, let $x=c$. Then we have

$$
\frac{y^{2}}{9}+\frac{z^{2}}{4}=1+\frac{c^{2}}{16}
$$

This describes a collection of ellipses. So the hyperbolas are connected smoothly with ellipses. The graph of the surface can be seen in Figure 5 and in Figure 6.

Figure 6. Top view of the surface $\frac{y^{2}}{9}+\frac{z^{2}}{4}=1+\frac{x^{2}}{16}$. Notice how the $z=0$ hyperbolas are visible on the edges.

