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STEVEN MILLER

Section 2.2: #4: Show that D = {(x, y) : x ∕= 0, y ∕= 0} is an open set.
Solution: This problem is very similar to the one in class, where we showed
that {(x, y) : y > 0} is open. What we must do is show that, no matter
what point (x, y) in D that we are given, we can always find a radius r such
that the ball of radius r about (x, y) is entirely contained in D; in other
words, the ball does not hit either coordinate axis. We claim that if we take
r = min(∣x∣/2, ∣y∣/2) (the smaller of ∣x∣/2 and ∣y∣/2) then this works as
the radius. To see this, we measure the distance from our point (x, y) to the
coordinate axes. The distance to the x-axis is ∣y∣, while the distance to the
y-axis is ∣x∣. Thus if we take our radius to be at most ∣y∣/2, we see the ball
cannot hit the x-axis. Similarly if we take the radius to be at most ∣x∣/2 then
the ball cannot hit the y-axis. By choosing r to be the minimum of these
two, we ensure that we hit neither axis, and thus D is open.

Additional Problem #1: Let f(x) = x2+8x+16 and g(x) = x2+2x−8.
Compute the limits as x goes to 0, 3 and∞ of f(x)+g(x), f(x)g(x) and
f(x)/g(x).
Solution: We have f(x)+g(x) = 2x2+10x+8 and f(x)g(x) = x4+10x3+
24x2 − 32x − 128. The limits at 0 and 3 are readily found for these as our
functions are continuous, and are just f(0) + g(0) = 8, f(3) + g(3) = 56,
f(0)g(0) = −128 and f(3)g(3) = 343. For f(x)/g(x), note g(x) is not
zero for any of the points under consideration. Thus we may use the limit of
a quotient is the quotient of the limits for 0 and 3, and find f(0)/g(0) = −2
and f(3)/g(3) = 7.

For the limits at∞, we need to be a bit more careful. Looking at f(x) +
g(x), we see the 2x2 term dominates as x→∞, and thus the limit is∞ (or,
if you wish, undefined). For the product, we note that the main term is x4,
which tends to infinity as x → ∞. Thus the limit of f(x)g(x) as x → ∞
is infinity again (or, if you wish, undefined again). For the last, the limit is
actually 1. The easiest way to see this is to factor out x2 from the numerator
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and denominator, and then cancel:

limx→∞x2 + 8x+ 16

x2 + 2x− 8
= lim

x→∞

1 + 8
x
+ 16

x2

1 + 2
x
− 8

x2

.

As the limit of the numerator is 1 and the limit of the denominator is 1,
we may use the limit of a quotient is the quotient of the limit, and find the
answer is 1.

Additional Problem #2: Compute the derivative of cos(sin(3x2+2xlnx)).
Note that if you can do this derivative correctly, you should be fine for
the course.
Solution: We may write this as A(B(C(x))), with C(x) = 3x2 + 2x lnx,
B(x) = sinx and A(x) = cos x. The solution involves two chain rules, and
then a product rule to evaluate C ′(x). The answer is A′(B(C(x)))B′(C(x))C ′(x).
Evaluating everything yields

− sin
(
sin(3x2 + 2xlnx)

)
⋅ cos

(
3x2 + 2x lnx

)
⋅ (6x+ 2 lnx+ 2) .


