MATH 105: SOLUTION KEYS: HOMEWORK 5: DUE FEBRUARY 22, 2010

STEVEN MILLER

Section 2.2: \#4: Show that $D=\{(x, y): x \neq 0, y \neq 0\}$ is an open set. Solution: This problem is very similar to the one in class, where we showed that $\{(x, y): y>0\}$ is open. What we must do is show that, no matter what point (x, y) in D that we are given, we can always find a radius r such that the ball of radius r about (x, y) is entirely contained in D; in other words, the ball does not hit either coordinate axis. We claim that if we take $r=\min (|x| / 2,|y| / 2)$ (the smaller of $|x| / 2$ and $|y| / 2)$ then this works as the radius. To see this, we measure the distance from our point (x, y) to the coordinate axes. The distance to the x-axis is $|y|$, while the distance to the y-axis is $|x|$. Thus if we take our radius to be at most $|y| / 2$, we see the ball cannot hit the x-axis. Similarly if we take the radius to be at most $|x| / 2$ then the ball cannot hit the y-axis. By choosing r to be the minimum of these two, we ensure that we hit neither axis, and thus D is open.

Additional Problem \#1: Let $f(x)=x^{2}+8 x+16$ and $g(x)=x^{2}+2 x-8$. Compute the limits as x goes to $\mathbf{0 , 3}$ and ∞ of $f(x)+g(x), f(x) g(x)$ and $f(x) / g(x)$.
Solution: We have $f(x)+g(x)=2 x^{2}+10 x+8$ and $f(x) g(x)=x^{4}+10 x^{3}+$ $24 x^{2}-32 x-128$. The limits at 0 and 3 are readily found for these as our functions are continuous, and are just $f(0)+g(0)=8, f(3)+g(3)=56$, $f(0) g(0)=-128$ and $f(3) g(3)=343$. For $f(x) / g(x)$, note $g(x)$ is not zero for any of the points under consideration. Thus we may use the limit of a quotient is the quotient of the limits for 0 and 3 , and find $f(0) / g(0)=-2$ and $f(3) / g(3)=7$.

For the limits at ∞, we need to be a bit more careful. Looking at $f(x)+$ $g(x)$, we see the $2 x^{2}$ term dominates as $x \rightarrow \infty$, and thus the limit is ∞ (or, if you wish, undefined). For the product, we note that the main term is x^{4}, which tends to infinity as $x \rightarrow \infty$. Thus the limit of $f(x) g(x)$ as $x \rightarrow \infty$ is infinity again (or, if you wish, undefined again). For the last, the limit is actually 1 . The easiest way to see this is to factor out x^{2} from the numerator
and denominator, and then cancel:

$$
\lim x \rightarrow \infty \frac{x^{2}+8 x+16}{x^{2}+2 x-8}=\lim _{x \rightarrow \infty} \frac{1+\frac{8}{x}+\frac{16}{x^{2}}}{1+\frac{2}{x}-\frac{8}{x^{2}}}
$$

As the limit of the numerator is 1 and the limit of the denominator is 1 , we may use the limit of a quotient is the quotient of the limit, and find the answer is 1 .

Additional Problem \#2: Compute the derivative of $\cos \left(\sin \left(3 x^{2}+2 x \ln x\right)\right)$. Note that if you can do this derivative correctly, you should be fine for the course.
Solution: We may write this as $A(B(C(x)))$, with $C(x)=3 x^{2}+2 x \ln x$, $B(x)=\sin x$ and $A(x)=\cos x$. The solution involves two chain rules, and then a product rule to evaluate $C^{\prime}(x)$. The answer is $A^{\prime}(B(C(x))) B^{\prime}(C(x)) C^{\prime}(x)$. Evaluating everything yields

$$
-\sin \left(\sin \left(3 x^{2}+2 x \ln x\right)\right) \cdot \cos \left(3 x^{2}+2 x \ln x\right) \cdot(6 x+2 \ln x+2) .
$$

