HW \#13

THREE SOLUTIONS GIVEN FOR EACH PROBLEM, USING
THE METHOD / NOTATION OF THE BOOK, USING THE METHOD / NOTATION FROM CLASS, AND USING THE 'FAST' METHOD

Section 3.2 \# 2,3 Determine the second-order Taylor formula for the given functions about the given points $\left(x_{0}, y_{0}\right)$.
2) $f(x, y)=\frac{1}{\left(x^{2}+y^{2}+1\right)}$ and $x_{0}=0, y_{0}=0$.

Following book's method:
Note that $\frac{\delta f}{\delta x}=\frac{-2 x}{\left(x^{2}+y^{2}+1\right)^{2}}$
$\frac{\delta f}{\delta y}=\frac{-2 y}{\left(x^{2}+y^{2}+1\right)^{2}}$
$\frac{\delta^{2} f}{\delta x^{2}}=\frac{2\left(3 x^{2}-y^{2}-1\right)}{\left(x^{2}+y^{2}+1\right)^{3}}$
$\frac{\delta^{2} f}{\delta y^{2}}=\frac{2\left(3 y^{2}-x^{2}-1\right)}{\left(x^{2}+y^{2}+1\right)^{3}}$
$\frac{\delta^{2} f}{\delta x \delta y}=\frac{8 y x}{\left(x^{2}+y^{2}+1\right)^{3}}$
$\frac{\delta^{2} f}{\delta y \delta x}=\frac{8 x y}{\left(x^{2}+y^{2}+1\right)^{3}}$
So, $f(\mathbf{h})=f\left(h_{1}, h_{2}\right)=f\left(x_{0}, y_{0}\right)+h_{1}\left(\frac{-2 x}{\left(x^{2}+y^{2}+1\right)^{2}}\right)+h_{2}\left(\frac{-2 y}{\left(x^{2}+y^{2}+1\right)^{2}}\right)+\frac{1}{2}\left(h_{1}^{2}\left(\frac{2\left(3 x^{2}-y^{2}-1\right)}{\left(x^{2}+y^{2}+1\right)^{3}}\right)+\right.$ $\left.h_{2}^{2}\left(\frac{2\left(3 y^{2}-x^{2}-1\right)}{\left(x^{2}+y^{2}+1\right)^{3}}\right)+2 h_{1} h_{2}\left(\frac{8 y x}{\left(x^{2}+y^{2}+1\right)^{3}}\right)\right)+R_{2}(\mathbf{0}, \mathbf{h})$

By substituting in and simplifying we get:

$$
f(\mathbf{h})=1-h_{1}^{2}-h_{2}^{2}+R_{2}(\mathbf{0}, \mathbf{h})
$$

Following method in class:

The second order Taylor expansion is given by

$$
f(0,0)+(\nabla f)(0,0) \cdot(x, y)+\frac{1}{2}(x, y)\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(0,0) & \frac{\partial^{2} f}{\partial x \partial y}(0,0) \\
\frac{\partial^{2} f}{\partial y \partial x}(0,0) & \frac{\partial^{2} f}{\partial y^{2}}(0,0)
\end{array}\right)\binom{x}{y} .
$$

We now evaluate the derivatives at the origin:
$f(x, y)=1 /\left(x^{2}+y^{2}+1\right)$, so at the origin it is 1 .
$\frac{\delta f}{\delta x}=\frac{-2 x}{\left(x^{2}+y^{2}+1\right)^{2}}$, so at the origin it is 0 .
$\frac{\delta f}{\delta y}=\frac{-2 y}{\left(x^{2}+y^{2}+1\right)^{2}}$, so at the origin it is 0 .
$\frac{\delta^{2} f}{\delta x^{2}}=\frac{2\left(3 x^{2}-y^{2}-1\right)}{\left(x^{2}+y^{2}+1\right)^{3}}$, so at the origin it is -2 .
$\frac{\delta^{2} f}{\delta y^{2}}=\frac{2\left(3 y^{2}-x^{2}-1\right)}{\left(x^{2}+y^{2}+1\right)^{3}}$, so at the origin it is -2 .
$\frac{\delta^{2} f}{\delta x \delta y}=\frac{8 y x}{\left(x^{2}+y^{2}+1\right)^{3}}$, so at the origin it is 0 .
$\frac{\delta^{2} f}{\delta y \delta x}=\frac{8 x y}{\left(x^{2}+y^{2}+1\right)^{3}}$, so at the origin it is 0 .

Thus the second order Taylor expansion is
$1+(0,0) \cdot(x, y)+\frac{1}{2}(x, y)\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right)\binom{x}{y}=1+\frac{1}{2}(x, y)\binom{-2 x}{-2 y}=1-x^{2}-y^{2}$.

Following the fast method in class:

We know the geometric series expansion, which gives

$$
\frac{1}{1-r}=1+r+r^{2}+\cdots
$$

If we take $r=-\left(x^{2}+y^{2}\right)$, then we have

$$
\frac{1}{x^{2}+y^{2}+1}=\frac{1}{1-r}
$$

Expanding gives

$$
\frac{1}{x^{2}+y^{2}+1}=1-\left(x^{2}+y^{2}\right)+\cdots
$$

where we may ignore the next terms because they're of degree 4 and higher.
3) $f(x, y)=e^{x+y}$ and $x_{0}=0, y_{0}=0$

Note that:
$\frac{\delta f}{\delta x}=e^{x+y}$
$\frac{\delta f}{\delta y}=e^{x+y}$
${ }_{\delta^{2} f}^{\delta y}=e^{x+y}$
$\frac{\delta^{\prime}}{\delta x^{2}}=e^{x+y}$
$\frac{\delta^{2} f}{\delta y^{2}}=e^{x+y}$
$\frac{\delta^{2} f}{\delta x \delta y}=e^{x+y}$
$\frac{\delta^{2} f}{\delta y \delta x}=e^{x+y}$
So, $f(\mathbf{h})=f\left(h_{1}, h_{2}\right)=f\left(x_{0}, y_{0}\right)+h_{1}\left(e^{x+y}\right)+h_{2}\left(e^{x+y}\right)+\frac{1}{2}\left(h_{1}^{2}\left(e^{x+y}\right)+h_{2}^{2}\left(e^{x+y}\right)+\right.$ $\left.h_{1} h_{2}\left(e^{x+y}\right)+h_{2} h_{1}\left(e^{x+y}\right)\right)+R_{2}(\mathbf{0}, \mathbf{h})$

By substituting in and simplifying we get:

$$
f(\mathbf{h})=1+h_{1}+h_{2}+\frac{1}{2}\left(h_{1}^{2}+h_{2}^{2}\right)+h_{1} h_{2}+R_{2}(\mathbf{0}, \mathbf{h})
$$

Following method in class:

The second order Taylor expansion is given by

$$
f(0,0)+(\nabla f)(0,0) \cdot(x, y)+\frac{1}{2}(x, y)\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(0,0) & \frac{\partial^{2} f}{\partial x \partial y}(0,0) \\
\frac{\partial^{2} f}{\partial y \partial x}(0,0) & \frac{\partial^{2} f}{\partial y^{2}}(0,0)
\end{array}\right)\binom{x}{y}
$$

We now evaluate the derivatives at the origin; a straightforward computation shows that they are all equal to 1 , which yields

$$
\begin{aligned}
& 1+(1,1) \cdot(x, y)+\frac{1}{2}(x, y)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
= & 1+x+y+\frac{1}{2}(x, y)\binom{x+y}{x+y} \\
= & 1+x+y+\frac{1}{2}(x(x+y)+y(x+y)) \\
= & 1+x+y+\frac{1}{2}\left(x^{2}+2 x y+y^{2}\right) \\
= & 1+x+y+\frac{x^{2}}{2}+x y+\frac{y^{2}}{2} .
\end{aligned}
$$

Following the fast method in class:

We have

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots, \quad e^{y}=1+y+\frac{y^{2}}{2!}+\cdots
$$

Thus the fast method is to just multiply these together, and then only keep terms of degree 0,1 or 2 (ie, $1, x, y, x^{2}, x y, y^{2}$, and not terms like $x^{2} y$). Thus

$$
\begin{aligned}
e^{x+y} & =e^{x} e^{y} \\
& =\left(1+x+\frac{x^{2}}{2!}+\cdots\right)\left(1+y+\frac{y^{2}}{2!}+\cdots\right) \\
& =1+x+y+\frac{x^{2}}{2}+x y+\frac{y^{2}}{2} .
\end{aligned}
$$

