MATH 105 SOLUTION KEYS

MURAT KOLOGLU

Homework 20

Assume the probability that X equals x is $2 e^{-2 x}$ if $x \geq 0$ and 0 otherwise, and the probability that Y equals y is $3 e^{-3 x}$ if $y \geq 0$ and 0 otherwise. Show that both of these densities are, in fact, probability distributions (this means showing they are non-negative and integrate to 1), and calculate the probability that $X \geq Y$.

Solution: First note that the exponential function is always positive. Thus

$$
\begin{aligned}
& 2 e^{-2 x} \geq 0 \\
& 3 e^{-3 x} \geq 0
\end{aligned}
$$

for all x. Now (denoting $f(x)$ and $g(y)$ to be the probability distribution of x and y, respectively),

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{0}^{\infty} 2 e^{-2 x} d x \\
& =\left(-e^{-2 x}\right)_{0}^{\infty} \\
& =0-(-1) \\
& =1
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} g(y) d y & =\int_{0}^{\infty} 3 e^{-3 y} d y \\
& =\left(-e^{-3 y}\right)_{0}^{\infty} \\
& =0-(-1) \\
& =1
\end{aligned}
$$

Therefore, the densities are indeed probability distributions.
Now to find the probability that $X \geq Y$, we want to condition y to be $a t$ most x. But x itself is not limited, it can take on any value. So the integral we are looking for is (assuming x and y are independent random variables);

Date: April 19, 2010.

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{x} f(x) g(y) d y d x
$$

Another way of looking at this is arguing that we are after the volume under the joint distribution of x and y over the region on the $x y$ plane where $x \geq y$, i.e. the triangle between the line $y=x$ and the x-axis (since the probabilities for negative values of x and y are 0).

Evaluating this integral gives us the probability that $X \geq Y$ to be

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{x} f(x) g(y) d y d x & =\int_{0}^{\infty} \int_{0}^{x}\left(2 e^{-2 x}\right)\left(3 e^{-3 y}\right) d y d x \\
& =\int_{0}^{\infty}\left(2 e^{-2 x}\right)\left(-e^{-3 y}\right)_{0}^{x} d x \\
& =\int_{0}^{\infty}\left(2 e^{-2 x}\right)\left(1-e^{-3 x}\right) d x \\
& =\int_{0}^{\infty}\left(2 e^{-2 x}-2 e^{-5 x}\right) d x \\
& =\int_{0}^{\infty} 2 e^{-2 x} d x-2 \int_{0}^{\infty} e^{-5 x} d x \\
& =\left(-e^{-2 x}\right)_{0}^{\infty}-2\left(\frac{-e^{-5 x}}{5}\right)_{0}^{\infty} \\
& =1-(2)\left(\frac{1}{5}\right) \\
& =\frac{3}{5}
\end{aligned}
$$

Section 3 - Review Exercises.

Exercise (15). Find the points on the surface $z^{2}-x y=1$ nearest the origin.
Solution: One way of approaching this problem is by using Lagrange multipliers. The function we want to minimize is the square of the distance from the origin, $r^{2}(x, y, z)=x^{2}+y^{2}+z^{2}$ (we are minimizing the square of the distance to make the algebra simpler). The constraint we are minimizing on is $f(x, y, z)=z^{2}-x y$. Then, by Lagrange's theorem we have;

$$
\begin{aligned}
\nabla r^{2}(x, y, z) & =\lambda \nabla f(x, y, z) \\
\langle 2 x, 2 y, 2 z\rangle & =\lambda\langle-y,-x, 2 z\rangle
\end{aligned}
$$

for some constant λ. Then we have the equations

$$
\begin{aligned}
2 x & =-\lambda y \\
2 y & =-\lambda x \\
2 z & =\lambda 2 z \\
z^{2}-x y & =1
\end{aligned}
$$

to solve. Substituting the second equation into the first one to eliminate λ we get,

$$
\begin{aligned}
2\left(\frac{-2 y}{\lambda}\right) & =-\lambda y \\
4 y & =\lambda^{2} y \\
\left(4-\lambda^{2}\right) y & =0
\end{aligned}
$$

Then, either $\lambda= \pm 2$ or $y=0$. If $\lambda= \pm 2,2 z= \pm 4 z$ implying $z=0$, and $2 x= \pm 2 y$ implying $x= \pm y$. Plugging these into the constraint we get that $\pm x^{2}=1$ which means $x= \pm 1$ and thus $y=\mp 1$. But $r^{2}=2$ for these two points. Whereas, if $y=0$, we have $x=0$ and thus $z^{2}=1$ by the constraint. The solutions in this latter case are $(x, y, z)=(0,0, \pm 1)$ which yield $r^{2}=1$ and thus are the solutions we are looking for.

Another way of approaching this problem is what might be termed the direct approach. We want to minimize $r^{2}(x, y, z)=x^{2}+y^{2}+z^{2}$ and we are given that

$$
\begin{aligned}
z^{2}-x y & =1 \\
z^{2} & =1+x y
\end{aligned}
$$

So, substituting the expression for z^{2} into the function r^{2} we get

$$
r^{2}(x, y)=x^{2}+y^{2}+x y+1 .
$$

Now, we know that this function has extrema at points for which the gradient is equal to zero. Then we are solving

$$
(0,0)=\nabla r^{2}(x, y)=(2 x+y, 2 y+x)
$$

which gives us

$$
\begin{aligned}
& 2 x=-y \\
& 2 y=-x .
\end{aligned}
$$

Solving for x we get

$$
\begin{aligned}
2 x & =-\left(\frac{-x}{2}\right) \\
4 x & =x \\
3 x & =0 \\
x & =0
\end{aligned}
$$

and thus $y=0$. Once again we get that $z^{2}=1$, and thus the same set of solutions

$$
(x, y, z)=(0,0, \pm 1)
$$

